问题描述
我有两种方法可以在 [0..n-1] 范围内生成 m 个不同的随机数
I have two methods of generating m distinct random numbers in the range [0..n-1]
方法一:
//C++-ish pseudocode
int result[m];
for(i = 0; i < m; ++i)
{
int r;
do
{
r = rand()%n;
}while(r is found in result array at indices from 0 to i)
result[i] = r;
}
方法二:
//C++-ish pseudocode
int arr[n];
for(int i = 0; i < n; ++i)
arr[i] = i;
random_shuffle(arr, arr+n);
result = first m elements in arr;
当 n 远大于 m 时,第一种方法更有效,否则第二种方法更有效.但是更大"不是一个严格的概念,是吗?:)
The first method is more efficient when n is much larger than m, whereas the second is more efficient otherwise. But "much larger" isn't that strict a notion, is it? :)
问题: 我应该使用 n 和 m 的什么公式来确定方法 1 还是方法 2 更有效?(就运行时间的数学期望而言)
Question: What formula of n and m should I use to determine whether method1 or method2 will be more efficient? (in terms of mathematical expectation of the running time)
推荐答案
纯数学:
让我们计算两种情况下 rand()
函数调用的数量并比较结果:
Pure mathematics:
Let's calculate the quantity of rand()
function calls in both cases and compare the results:
案例 1:当您已经选择了 k 个数字时,让我们看看在步骤 i = k
上调用的数学期望.通过一次 rand()
调用获得一个数字的概率等于 p = (n-k)/n
.我们需要知道此类调用数量的数学期望,这导致获得我们还没有的数字.
Case 1:
let's see the mathematical expectation of calls on step i = k
, when you already have k numbers chosen. The probability to get a number with one rand()
call is equal to p = (n-k)/n
. We need to know the mathematical expectation of such calls quantity which leads to obtaining a number we don't have yet.
使用1
调用获得它的概率是p
.使用 2
调用 - q * p
,其中 q = 1 - p
.在一般情况下,在 n
次调用之后准确获得它的概率是 (q^(n-1))*p
.因此,数学期望为 Sum[ n * q^(n-1) * p ], n = 1 -->INF
.这个总和等于 1/p
(由 wolfram alpha 证明).
The probability to get it using 1
call is p
. Using 2
calls - q * p
, where q = 1 - p
. In general case, the probability to get it exactly after n
calls is (q^(n-1))*p
. Thus, the mathematical expectation is
Sum[ n * q^(n-1) * p ], n = 1 --> INF
. This sum is equal to 1/p
(proved by wolfram alpha).
因此,在步骤 i = k
上,您将执行 1/p = n/(nk)
调用 rand()
功能.
So, on the step i = k
you will perform 1/p = n/(n-k)
calls of the rand()
function.
现在让我们总结一下:
Sum[ n/(n - k) ], k = 0 -->m - 1 = n * T
- 方法 1 中的 rand
调用次数.
这里 T = Sum[ 1/(n - k) ], k = 0 -->m - 1
Sum[ n/(n - k) ], k = 0 --> m - 1 = n * T
- the number of rand
calls in method 1.
Here T = Sum[ 1/(n - k) ], k = 0 --> m - 1
情况 2:
这里 rand()
在 random_shuffle
内被调用 n - 1
次(在大多数实现中).
Here rand()
is called inside random_shuffle
n - 1
times (in most implementations).
现在,要选择方法,我们必须比较这两个值: n * T ?n - 1
.
因此,要选择合适的方法,请按上述方法计算 T
.如果 T <(n - 1)/n
最好使用第一种方法.否则使用第二种方法.
Now, to choose the method, we have to compare these two values: n * T ? n - 1
.
So, to choose the appropriate method, calculate T
as described above. If T < (n - 1)/n
it's better to use the first method. Use the second method otherwise.
这篇关于在 [0..n-1] 范围内生成 m 个不同的随机数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!