<small id='QlUha'></small><noframes id='QlUha'>

<i id='QlUha'><tr id='QlUha'><dt id='QlUha'><q id='QlUha'><span id='QlUha'><b id='QlUha'><form id='QlUha'><ins id='QlUha'></ins><ul id='QlUha'></ul><sub id='QlUha'></sub></form><legend id='QlUha'></legend><bdo id='QlUha'><pre id='QlUha'><center id='QlUha'></center></pre></bdo></b><th id='QlUha'></th></span></q></dt></tr></i><div id='QlUha'><tfoot id='QlUha'></tfoot><dl id='QlUha'><fieldset id='QlUha'></fieldset></dl></div>
<legend id='QlUha'><style id='QlUha'><dir id='QlUha'><q id='QlUha'></q></dir></style></legend>
    1. <tfoot id='QlUha'></tfoot>

        • <bdo id='QlUha'></bdo><ul id='QlUha'></ul>

        如何通过 Elasticsearch 模糊匹配电子邮件或电话?

        How to fuzzy match email or telephone by Elasticsearch?(如何通过 Elasticsearch 模糊匹配电子邮件或电话?)

              <tbody id='egT9u'></tbody>
            <i id='egT9u'><tr id='egT9u'><dt id='egT9u'><q id='egT9u'><span id='egT9u'><b id='egT9u'><form id='egT9u'><ins id='egT9u'></ins><ul id='egT9u'></ul><sub id='egT9u'></sub></form><legend id='egT9u'></legend><bdo id='egT9u'><pre id='egT9u'><center id='egT9u'></center></pre></bdo></b><th id='egT9u'></th></span></q></dt></tr></i><div id='egT9u'><tfoot id='egT9u'></tfoot><dl id='egT9u'><fieldset id='egT9u'></fieldset></dl></div>
            <legend id='egT9u'><style id='egT9u'><dir id='egT9u'><q id='egT9u'></q></dir></style></legend><tfoot id='egT9u'></tfoot>

              <bdo id='egT9u'></bdo><ul id='egT9u'></ul>

                <small id='egT9u'></small><noframes id='egT9u'>

                1. 本文介绍了如何通过 Elasticsearch 模糊匹配电子邮件或电话?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  我想通过 Elasticsearch 对电子邮件或电话进行模糊匹配.例如:

                  I want to make fuzzy match for email or telephone by Elasticsearch. For example:

                  匹配所有以 @gmail.com

                  匹配所有以136开头的电话.

                  match all telephone startwith 136.

                  我知道我可以使用通配符,

                  I know I can use wildcard,

                  {
                   "query": {
                      "wildcard" : {
                        "email": "*gmail.com"
                      }
                    }
                  }
                  

                  但是性能很差.我尝试使用正则表达式:

                  but the performance is very poor. I tried to use regexp:

                  {"query": {"regexp": {"email": {"value": "*163\.com*"} } } }
                  

                  但不起作用.

                  有没有更好的方法来制作它?

                  Is there better way to make it?

                  curl -XGET 本地主机:9200/user_data

                  curl -XGET localhost:9200/user_data

                  {
                      "user_data": {
                          "aliases": {},
                          "mappings": {
                              "user_data": {
                                  "properties": {
                                      "address": {
                                          "type": "string"
                                      },
                                      "age": {
                                          "type": "long"
                                      },
                                      "comment": {
                                          "type": "string"
                                      },
                                      "created_on": {
                                          "type": "date",
                                          "format": "dateOptionalTime"
                                      },
                                      "custom": {
                                          "properties": {
                                              "key": {
                                                  "type": "string"
                                              },
                                              "value": {
                                                  "type": "string"
                                              }
                                          }
                                      },
                                      "gender": {
                                          "type": "string"
                                      },
                                      "name": {
                                          "type": "string"
                                      },
                                      "qq": {
                                          "type": "string"
                                      },
                                      "tel": {
                                          "type": "string"
                                      },
                                      "updated_on": {
                                          "type": "date",
                                          "format": "dateOptionalTime"
                                      },
                                  }
                              }
                          },
                          "settings": {
                              "index": {
                                  "creation_date": "1458832279465",
                                  "uuid": "Fbmthc3lR0ya51zCnWidYg",
                                  "number_of_replicas": "1",
                                  "number_of_shards": "5",
                                  "version": {
                                      "created": "1070299"
                                  }
                              }
                          },
                          "warmers": {}
                      }
                  }
                  

                  映射:

                  {
                    "settings": {
                      "analysis": {
                        "analyzer": {
                          "index_phone_analyzer": {
                            "type": "custom",
                            "char_filter": [ "digit_only" ],
                            "tokenizer": "digit_edge_ngram_tokenizer",
                            "filter": [ "trim" ]
                          },
                          "search_phone_analyzer": {
                            "type": "custom",
                            "char_filter": [ "digit_only" ],
                            "tokenizer": "keyword",
                            "filter": [ "trim" ]
                          },
                          "index_email_analyzer": {
                            "type": "custom",
                            "tokenizer": "standard",
                            "filter": [ "lowercase", "name_ngram_filter", "trim" ]
                          },
                          "search_email_analyzer": {
                            "type": "custom",
                            "tokenizer": "standard",
                            "filter": [ "lowercase", "trim" ]
                          }
                        },
                        "char_filter": {
                          "digit_only": {
                            "type": "pattern_replace",
                            "pattern": "\\D+",
                            "replacement": ""
                          }
                        },
                        "tokenizer": {
                          "digit_edge_ngram_tokenizer": {
                            "type": "edgeNGram",
                            "min_gram": "3",
                            "max_gram": "15",
                            "token_chars": [ "digit" ]
                          }
                        },
                        "filter": {
                          "name_ngram_filter": {
                            "type": "ngram",
                            "min_gram": "3",
                            "max_gram": "20"
                          }
                        }
                      }
                    },
                    "mappings" : {
                      "user_data" : {
                        "properties" : {
                          "name" : {
                            "type" : "string",
                            "analyzer" : "ik"
                          },
                          "age" : {
                            "type" : "integer"
                          },
                          "gender": {
                            "type" : "string"
                          },
                          "qq" : {
                            "type" : "string"
                          },
                          "email" : {
                            "type" : "string",
                            "analyzer": "index_email_analyzer",
                            "search_analyzer": "search_email_analyzer"
                          },
                          "tel" : {
                            "type" : "string",
                            "analyzer": "index_phone_analyzer",
                            "search_analyzer": "search_phone_analyzer"
                          },
                          "address" : {
                            "type": "string",
                            "analyzer" : "ik"
                          },
                          "comment" : {
                            "type" : "string",
                            "analyzer" : "ik"
                          },
                          "created_on" : {
                            "type" : "date",
                            "format" : "dateOptionalTime"
                          },
                          "updated_on" : {
                            "type" : "date",
                            "format" : "dateOptionalTime"
                          },
                          "custom": {
                            "type" : "nested",
                            "properties" : {
                              "key" : {
                                "type" : "string"
                              },
                              "value" : {
                                "type" : "string"
                              }
                            }
                          }
                        }
                      }
                    }
                  }
                  

                  推荐答案

                  一个简单的方法是创建一个使用 n-gram 令牌过滤器 用于电子邮件(=> 见下文 index_email_analyzersearch_email_analyzer + email_url_analyzer 用于精确的电子邮件匹配)和 edge-ngram 标记过滤器 用于手机(=> 见下文 index_phone_analyzersearch_phone_analyzer).

                  An easy way to do this is to create a custom analyzer which makes use of the n-gram token filter for emails (=> see below index_email_analyzer and search_email_analyzer + email_url_analyzer for exact email matching) and edge-ngram token filter for phones (=> see below index_phone_analyzer and search_phone_analyzer).

                  完整的索引定义如下.

                  PUT myindex
                  {
                    "settings": {
                      "analysis": {
                        "analyzer": {
                          "email_url_analyzer": {
                            "type": "custom",
                            "tokenizer": "uax_url_email",
                            "filter": [ "trim" ]
                          },
                          "index_phone_analyzer": {
                            "type": "custom",
                            "char_filter": [ "digit_only" ],
                            "tokenizer": "digit_edge_ngram_tokenizer",
                            "filter": [ "trim" ]
                          },
                          "search_phone_analyzer": {
                            "type": "custom",
                            "char_filter": [ "digit_only" ],
                            "tokenizer": "keyword",
                            "filter": [ "trim" ]
                          },
                          "index_email_analyzer": {
                            "type": "custom",
                            "tokenizer": "standard",
                            "filter": [ "lowercase", "name_ngram_filter", "trim" ]
                          },
                          "search_email_analyzer": {
                            "type": "custom",
                            "tokenizer": "standard",
                            "filter": [ "lowercase", "trim" ]
                          }
                        },
                        "char_filter": {
                          "digit_only": {
                            "type": "pattern_replace",
                            "pattern": "\\D+",
                            "replacement": ""
                          }
                        },
                        "tokenizer": {
                          "digit_edge_ngram_tokenizer": {
                            "type": "edgeNGram",
                            "min_gram": "1",
                            "max_gram": "15",
                            "token_chars": [ "digit" ]
                          }
                        },
                        "filter": {
                          "name_ngram_filter": {
                            "type": "ngram",
                            "min_gram": "1",
                            "max_gram": "20"
                          }
                        }
                      }
                    },
                    "mappings": {
                      "your_type": {
                        "properties": {
                          "email": {
                            "type": "string",
                            "analyzer": "index_email_analyzer",
                            "search_analyzer": "search_email_analyzer"
                          },
                          "phone": {
                            "type": "string",
                            "analyzer": "index_phone_analyzer",
                            "search_analyzer": "search_phone_analyzer"
                          }
                        }
                      }
                    }
                  }
                  

                  现在,让我们一点一点地剖析它.

                  Now, let's dissect it one bit after another.

                  对于 phone 字段,其想法是使用 index_phone_analyzer 索引电话值,它使用边缘 ngram 标记器来索引电话号码的所有前缀.因此,如果您的电话号码是 1362435647,则会生成以下令牌:113136、<代码>1362、1362413624313624351362435613624356代码>、<代码>136243564、<代码>1362435647.

                  For the phone field, the idea is to index phone values with index_phone_analyzer, which uses an edge-ngram tokenizer in order to index all prefixes of the phone number. So if your phone number is 1362435647, the following tokens will be produced: 1, 13, 136, 1362, 13624, 136243, 1362435, 13624356, 13624356, 136243564, 1362435647.

                  然后在搜索时我们使用另一个分析器 search_phone_analyzer 它将简单地获取输入号码(例如 136)并将其与 phone 字段匹配使用简单的 matchterm 查询:

                  Then when searching we use another analyzer search_phone_analyzer which will simply take the input number (e.g. 136) and match it against the phone field using a simple match or term query:

                  POST myindex
                  { 
                      "query": {
                          "term": 
                              { "phone": "136" }
                      }
                  }
                  

                  对于 email 字段,我们以类似的方式进行,因为我们使用 index_email_analyzer 索引电子邮件值,它使用 ngram 令牌过滤器,这将产生可以从电子邮件值中获取的所有可能的不同长度(1 到 20 个字符之间)的标记.例如:john@gmail.com 将被标记为 j, jo, joh, ...,gmail.com, ..., john@gmail.com.

                  For the email field, we proceed in a similar way, in that we index the email values with the index_email_analyzer, which uses an ngram token filter, which will produce all possible tokens of varying length (between 1 and 20 chars) that can be taken from the email value. For instance: john@gmail.com will be tokenized to j, jo, joh, ..., gmail.com, ..., john@gmail.com.

                  然后在搜索时,我们将使用另一个名为 search_email_analyzer 的分析器,它将获取输入并尝试将其与索引标记进行匹配.

                  Then when searching, we'll use another analyzer called search_email_analyzer which will take the input and try to match it against the indexed tokens.

                  POST myindex
                  { 
                      "query": {
                          "term": 
                              { "email": "@gmail.com" }
                      }
                  }
                  

                  email_url_analyzer 分析器未在此示例中使用,但我已将其包含在内,以防您需要匹配确切的电子邮件值.

                  The email_url_analyzer analyzer is not used in this example but I've included it just in case you need to match on the exact email value.

                  这篇关于如何通过 Elasticsearch 模糊匹配电子邮件或电话?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  Bogus foreign key constraint fail(虚假外键约束失败)
                  how to get last insert id after insert query in codeigniter active record(如何在codeigniter活动记录中插入查询后获取最后一个插入ID)
                  Force InnoDB to recheck foreign keys on a table/tables?(强制 InnoDB 重新检查表/表上的外键?)
                  How to auto generate migrations with Sequelize CLI from Sequelize models?(如何使用 Sequelize CLI 从 Sequelize 模型自动生成迁移?)
                  Clear MySQL query cache without restarting server(无需重启服务器即可清除 MySQL 查询缓存)
                  ALTER TABLE to add a composite primary key(ALTER TABLE 添加复合主键)
                2. <legend id='psdYh'><style id='psdYh'><dir id='psdYh'><q id='psdYh'></q></dir></style></legend>

                      <tbody id='psdYh'></tbody>
                    <i id='psdYh'><tr id='psdYh'><dt id='psdYh'><q id='psdYh'><span id='psdYh'><b id='psdYh'><form id='psdYh'><ins id='psdYh'></ins><ul id='psdYh'></ul><sub id='psdYh'></sub></form><legend id='psdYh'></legend><bdo id='psdYh'><pre id='psdYh'><center id='psdYh'></center></pre></bdo></b><th id='psdYh'></th></span></q></dt></tr></i><div id='psdYh'><tfoot id='psdYh'></tfoot><dl id='psdYh'><fieldset id='psdYh'></fieldset></dl></div>
                      <tfoot id='psdYh'></tfoot>
                    1. <small id='psdYh'></small><noframes id='psdYh'>

                        • <bdo id='psdYh'></bdo><ul id='psdYh'></ul>