问题描述
使用pandas dataframe 的to_sql 方法,我可以很容易地将少量行写入oracle 数据库中的表:
Using pandas dataframe's to_sql method, I can write a small number of rows to a table in oracle database pretty easily:
from sqlalchemy import create_engine
import cx_Oracle
dsn_tns = "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=<host>)(PORT=1521))
(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=<servicename>)))"
pwd = input('Please type in password:')
engine = create_engine('oracle+cx_oracle://myusername:' + pwd + '@%s' % dsn_tns)
df.to_sql('test_table', engine.connect(), if_exists='replace')
但是对于任何常规大小的数据帧(我的有 60k 行,不是那么大),代码变得无法使用,因为它在我愿意等待的时间内从未完成(绝对超过 10 分钟).我已经用谷歌搜索并搜索了很多次,最接近的解决方案是 ansonw 在 这个问题.但那是关于mysql,而不是oracle.正如 Ziggy Eunicien 指出的那样,它不适用于 oracle.有什么想法吗?
But with any regular-sized dataframes (mine has 60k rows, not so big), the code became unusable as it never finished in the time I was willing to wait (definitely more than 10 min). I've googled and searched quite a few times and the closest solution was the answer given by ansonw in this question. But that one was about mysql, not oracle. As Ziggy Eunicien pointed out, it did not work for oracle. Any ideas?
编辑
这是数据框中的行示例:
Here's a sample of rows in the dataframe:
id name premium created_date init_p term_number uprate value score group action_reason
160442353 LDP: Review 1295.619617 2014-01-20 1130.75 1 7 -42 236.328243 6 pass
164623435 TRU: Referral 453.224880 2014-05-20 0.00 11 NaN -55 38.783290 1 suppress
这里是 df 的数据类型:
and here is the data types for the df:
id int64
name object
premium float64
created_date object
init_p float64
term_number float64
uprate float64
value float64
score float64
group int64
action_reason object
推荐答案
Pandas + SQLAlchemy 默认在 Oracle DB 中将所有 object
(字符串)列保存为 CLOB,这使插入极其缓慢.
Pandas + SQLAlchemy per default save all object
(string) columns as CLOB in Oracle DB, which makes insertion extremely slow.
以下是一些测试:
import pandas as pd
import cx_Oracle
from sqlalchemy import types, create_engine
#######################################################
### DB connection strings config
#######################################################
tns = """
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = my-db-scan)(PORT = 1521))
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = my_service_name)
)
)
"""
usr = "test"
pwd = "my_oracle_password"
engine = create_engine('oracle+cx_oracle://%s:%s@%s' % (usr, pwd, tns))
# sample DF [shape: `(2000, 11)`]
# i took your 2 rows DF and replicated it: `df = pd.concat([df]* 10**3, ignore_index=True)`
df = pd.read_csv('/path/to/file.csv')
DF 信息:
In [61]: df.shape
Out[61]: (2000, 11)
In [62]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 11 columns):
id 2000 non-null int64
name 2000 non-null object
premium 2000 non-null float64
created_date 2000 non-null datetime64[ns]
init_p 2000 non-null float64
term_number 2000 non-null int64
uprate 1000 non-null float64
value 2000 non-null int64
score 2000 non-null float64
group 2000 non-null int64
action_reason 2000 non-null object
dtypes: datetime64[ns](1), float64(4), int64(4), object(2)
memory usage: 172.0+ KB
让我们看看将它存储到 Oracle DB 需要多长时间:
Let's check how long will it take to store it to Oracle DB:
In [57]: df.shape
Out[57]: (2000, 11)
In [58]: %timeit -n 1 -r 1 df.to_sql('test_table', engine, index=False, if_exists='replace')
1 loop, best of 1: 16 s per loop
在 Oracle DB 中(注意 CLOB):
In Oracle DB (pay attention at CLOB's):
AAA> desc test.test_table
Name Null? Type
------------------------------- -------- ------------------
ID NUMBER(19)
NAME CLOB # !!!
PREMIUM FLOAT(126)
CREATED_DATE DATE
INIT_P FLOAT(126)
TERM_NUMBER NUMBER(19)
UPRATE FLOAT(126)
VALUE NUMBER(19)
SCORE FLOAT(126)
group NUMBER(19)
ACTION_REASON CLOB # !!!
现在让我们指示 pandas 将所有 object
列保存为 VARCHAR 数据类型:
Now let's instruct pandas to save all object
columns as VARCHAR data types:
In [59]: dtyp = {c:types.VARCHAR(df[c].str.len().max())
...: for c in df.columns[df.dtypes == 'object'].tolist()}
...:
In [60]: %timeit -n 1 -r 1 df.to_sql('test_table', engine, index=False, if_exists='replace', dtype=dtyp)
1 loop, best of 1: 335 ms per loop
这次大约是.快 48 倍
This time it was approx. 48 times faster
签入 Oracle 数据库:
Check in Oracle DB:
AAA> desc test.test_table
Name Null? Type
----------------------------- -------- ---------------------
ID NUMBER(19)
NAME VARCHAR2(13 CHAR) # !!!
PREMIUM FLOAT(126)
CREATED_DATE DATE
INIT_P FLOAT(126)
TERM_NUMBER NUMBER(19)
UPRATE FLOAT(126)
VALUE NUMBER(19)
SCORE FLOAT(126)
group NUMBER(19)
ACTION_REASON VARCHAR2(8 CHAR) # !!!
让我们用 200.000 行 DF 测试它:
Let's test it with 200.000 rows DF:
In [69]: df.shape
Out[69]: (200000, 11)
In [70]: %timeit -n 1 -r 1 df.to_sql('test_table', engine, index=False, if_exists='replace', dtype=dtyp, chunksize=10**4)
1 loop, best of 1: 4.68 s per loop
在我的测试(不是最快的)环境中,20 万行 DF 花费了大约 5 秒.
It took ~5 seconds for 200K rows DF in my test (not the fastest) environment.
结论:使用以下技巧,以便在将 DataFrame 保存到 Oracle DB 时为 object
dtype 的所有 DF 列显式指定 dtype
.否则会保存为CLOB数据类型,需要特殊处理,速度很慢
Conclusion: use the following trick in order to explicitly specify dtype
for all DF columns of object
dtype when saving DataFrames to Oracle DB. Otherwise it'll be saved as CLOB data type, which requires special treatment and makes it very slow
dtyp = {c:types.VARCHAR(df[c].str.len().max())
for c in df.columns[df.dtypes == 'object'].tolist()}
df.to_sql(..., dtype=dtyp)
这篇关于使用 SqlAlchemy 和 cx_Oracle 将 Pandas DataFrame 写入 Oracle 数据库时加快 to_sql()的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!