本文介绍了Pandas:对给定列求和 DataFrame 行的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!
问题描述
我有以下数据框:
In [1]:
import pandas as pd
df = pd.DataFrame({'a': [1,2,3], 'b': [2,3,4], 'c':['dd','ee','ff'], 'd':[5,9,1]})
df
Out [1]:
a b c d
0 1 2 dd 5
1 2 3 ee 9
2 3 4 ff 1
我想添加一列 'e'
,它是列 'a'
、'b'
和 的总和>'d'
.
I would like to add a column 'e'
which is the sum of column 'a'
, 'b'
and 'd'
.
浏览论坛,我认为这样的事情会起作用:
Going across forums, I thought something like this would work:
df['e'] = df[['a','b','d']].map(sum)
但它没有.
我想知道以 ['a','b','d']
和 df
列的列表作为输入的适当操作.
I would like to know the appropriate operation with the list of columns ['a','b','d']
and df
as inputs.
推荐答案
你可以只 sum
并设置参数 axis=1
对行求和,这将忽略 none数字列:
You can just sum
and set param axis=1
to sum the rows, this will ignore none numeric columns:
In [91]:
df = pd.DataFrame({'a': [1,2,3], 'b': [2,3,4], 'c':['dd','ee','ff'], 'd':[5,9,1]})
df['e'] = df.sum(axis=1)
df
Out[91]:
a b c d e
0 1 2 dd 5 8
1 2 3 ee 9 14
2 3 4 ff 1 8
如果您只想对特定列求和,则可以创建列列表并删除您不感兴趣的列:
If you want to just sum specific columns then you can create a list of the columns and remove the ones you are not interested in:
In [98]:
col_list= list(df)
col_list.remove('d')
col_list
Out[98]:
['a', 'b', 'c']
In [99]:
df['e'] = df[col_list].sum(axis=1)
df
Out[99]:
a b c d e
0 1 2 dd 5 3
1 2 3 ee 9 5
2 3 4 ff 1 7
这篇关于Pandas:对给定列求和 DataFrame 行的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!
本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!