本文介绍了Pandas-通过对列和索引的值求和来合并两个数据框的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!
问题描述
我想按索引和列合并两个数据集.
I want to merge two datasets by indexes and columns.
我想合并整个数据集
df1 = pd.DataFrame([[1, 0, 0], [0, 2, 0], [0, 0, 3]],columns=[1, 2, 3])
df1
1 2 3
0 1 0 0
1 0 2 0
2 0 0 3
df2 = pd.DataFrame([[0, 0, 1], [0, 2, 0], [3, 0, 0]],columns=[1, 2, 3])
df2
1 2 3
0 0 0 1
1 0 2 0
2 3 0 0
我已经尝试过这段代码,但我得到了这个错误.我不明白为什么它将轴的大小显示为错误.
I have tried this code but I got this error. I can't get why it shows the size of axis as an error.
df_sum = pd.concat([df1, df2])
.groupby(df2.index)[df2.columns]
.sum().reset_index()
ValueError: Grouper and axis must be same length
这就是我预期的 df_sum 的输出
This was what I expected the output of df_sum
df_sum
1 2 3
0 1 0 1
1 0 4 0
2 3 0 3
推荐答案
你可以使用:df1.add(df2, fill_value=0)
.它会将 df2
添加到 df1
中,并且它会将 NAN
值替换为 0
.
You can use :df1.add(df2, fill_value=0)
. It will add df2
into df1
also it will replace NAN
value with 0
.
>>> import numpy as np
>>> import pandas as pd
>>> df2 = pd.DataFrame([(10,9),(8,4),(7,np.nan)], columns=['a','b'])
>>> df1 = pd.DataFrame([(1,2),(3,4),(5,6)], columns=['a','b'])
>>> df1.add(df2, fill_value=0)
a b
0 11 11.0
1 11 8.0
2 12 6.0
这篇关于Pandas-通过对列和索引的值求和来合并两个数据框的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!
本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!