PyTorch NotImplementedError 转发

PyTorch NotImplementedError in forward(PyTorch NotImplementedError 转发)
本文介绍了PyTorch NotImplementedError 转发的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

import torch
import torch.nn as nn

device = torch.device('cuda' if torch.cuda.is_available() else 
'cpu')

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.layer = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2), # 16x16x650
            nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1), # 32x16x650
            nn.ReLU(),
            nn.Dropout2d(0.5),
            nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), # 64x16x650
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2), # 64x8x325
            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
            nn.ReLU()) # 64x8x325

        self.fc = nn.Sequential(
            nn.Linear(64*8*325, 128),
            nn.ReLU(),
            nn.Linear(128, 256),
            nn.ReLU(),
            nn.Linear(256, 1),
        )

        def forward(self, x):
            out = self.layer1(x)
            out = self.layer2(out)
            out = out.reshape(out.size(0), -1)
            out = self.fc(out)
            return out

# HYPERPARAMETER
learning_rate = 0.0001 
num_epochs = 15

import data

def main():
    model = Model().to(device)

    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), 
lr=learning_rate)

    total_step = len(data.train_loader)
    for epoch in range(num_epochs):
        for i, (images, labels) in enumerate(data.train_loader):
            images = images.to(device)
            labels = labels.to(device)

            outputs = model(images)
            loss = criterion(outputs, labels)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        if (i + 1) % 100 == 0:
            print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
                  .format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))

    model.eval()
    with torch.no_grad():
        correct = 0
        total = 0
        for images, labels in data.test_loader:
            images = images.to(device)
            labels = labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()

        print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))

if __name__ == '__main__':
    main()

错误:

File "/home/rladhkstn8/Desktop/SWID/tmp/pycharm_project_853/model.py", line 82, in <module>
    main()
  File "/home/rladhkstn8/Desktop/SWID/tmp/pycharm_project_853/model.py", line 56, in main
    outputs = model(images)
  File "/home/rladhkstn8/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 477, in __call__
    result = self.forward(*input, **kwargs)
  File "/home/rladhkstn8/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 83, in forward
    raise NotImplementedError
NotImplementedError

我不知道问题出在哪里.我知道应该实现NotImplementedError,但是当有未实现的代码时就会发生.

I do not know where the problem is. I know that NotImplementedError should be implemented, but it happens when there is unimplemented code.

推荐答案

请仔细查看__init__ 函数的缩进:您的 forward__init__ 的一部分,而不是模块的一部分.

please look carefully at the indentation of your __init__ function: your forward is part of __init__ not part of your module.

这篇关于PyTorch NotImplementedError 转发的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Reading *.mhd/*.raw format in python(在 python 中读取 *.mhd/*.raw 格式)
Count number of cells in the image(计算图像中的单元格数)
How to detect paragraphs in a text document image for a non-consistent text structure in Python OpenCV(如何在 Python OpenCV 中检测文本文档图像中的段落是否存在不一致的文本结构)
How to get the coordinates of the bounding box in YOLO object detection?(YOLO物体检测中如何获取边界框的坐标?)
Divide an image into 5x5 blocks in python and compute histogram for each block(在 python 中将图像划分为 5x5 块并计算每个块的直方图)
Extract cow number from image(从图像中提取奶牛编号)