如何在 HoughLinesP 之后合并行?

How to merge lines after HoughLinesP?(如何在 HoughLinesP 之后合并行?)
本文介绍了如何在 HoughLinesP 之后合并行?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我的任务是找到线(startX、startY、endX、endY)和矩形(4 线)的坐标.这是输入文件:

我使用下一个代码:

img = cv2.imread(image_src)灰色 = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)ret, thresh1 = cv2.threshold(灰色,127,255,cv2.THRESH_BINARY)边缘 = cv2.Canny(thresh1,50,150,apertureSize = 3)minLineLength = 100最大线间隙 = 10线 = cv2.HoughLinesP(edges,1,np.pi/180,10,minLineLength,maxLineGap)打印(长度(行))对于行中的行:cv2.line(img,(line[0][0],line[0][1]),(line[0][2],line[0][3]),(0,0,255),6)

我得到下一个结果:

从最后一张图片中,您可以看到大量的小红线.

问题:

  1. 合并小线条的最佳方法是什么?
  2. 为什么有很多HoughLinesP 检测不到的小部分?

解决方案

我终于完成了流水线:

  1. 修正了不正确的参数(Dan 建议)
  2. 开发了我自己的合并线段"算法.

    还有 572 行.在我的合并线段"之后,我们只有 89 行

    My task is to find coordinates of lines (startX, startY, endX, endY) and rectangles (4 lines). Here is input file:

    I use the next code:

    img = cv2.imread(image_src)
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    ret, thresh1 = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
    
    edges = cv2.Canny(thresh1,50,150,apertureSize = 3)
    
    minLineLength = 100
    maxLineGap = 10
    lines = cv2.HoughLinesP(edges,1,np.pi/180,10,minLineLength,maxLineGap)
    print(len(lines))
    for line in lines:
        cv2.line(img,(line[0][0],line[0][1]),(line[0][2],line[0][3]),(0,0,255),6)
    

    I get the next results:

    From the last image you can see big amount of small red lines.

    Questions:

    1. What is the best way to merge small lines?
    2. Why there are a lot of small portions that are not detected by HoughLinesP?

    解决方案

    I have finally completed the pipeline:

    1. fixed incorrect parameters (as were suggested by Dan)
    2. developed my own 'merging line segments' algorithm. I had bad results when I implemented TAVARES and PADILHA algorithm (as were suggested by Andrew).
    3. I have skipped Canny and got better results (as were suggested by Alexander)

    Please find the code and results:

    def get_lines(lines_in):
        if cv2.__version__ < '3.0':
            return lines_in[0]
        return [l[0] for l in lines_in]
    
    
    def process_lines(image_src):
        img = mpimg.imread(image_src)
        gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    
        ret, thresh1 = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
    
        thresh1 = cv2.bitwise_not(thresh1)
    
        edges = cv2.Canny(thresh1, threshold1=50, threshold2=200, apertureSize = 3)
    
        lines = cv2.HoughLinesP(thresh1, rho=1, theta=np.pi/180, threshold=50,
                                minLineLength=50, maxLineGap=30)
    
        # l[0] - line; l[1] - angle
        for line in get_lines(lines):
            leftx, boty, rightx, topy = line
            cv2.line(img, (leftx, boty), (rightx,topy), (0,0,255), 6) 
    
        # merge lines
    
        #------------------
        # prepare
        _lines = []
        for _line in get_lines(lines):
            _lines.append([(_line[0], _line[1]),(_line[2], _line[3])])
    
        # sort
        _lines_x = []
        _lines_y = []
        for line_i in _lines:
            orientation_i = math.atan2((line_i[0][1]-line_i[1][1]),(line_i[0][0]-line_i[1][0]))
            if (abs(math.degrees(orientation_i)) > 45) and abs(math.degrees(orientation_i)) < (90+45):
                _lines_y.append(line_i)
            else:
                _lines_x.append(line_i)
    
        _lines_x = sorted(_lines_x, key=lambda _line: _line[0][0])
        _lines_y = sorted(_lines_y, key=lambda _line: _line[0][1])
    
        merged_lines_x = merge_lines_pipeline_2(_lines_x)
        merged_lines_y = merge_lines_pipeline_2(_lines_y)
    
        merged_lines_all = []
        merged_lines_all.extend(merged_lines_x)
        merged_lines_all.extend(merged_lines_y)
        print("process groups lines", len(_lines), len(merged_lines_all))
        img_merged_lines = mpimg.imread(image_src)
        for line in merged_lines_all:
            cv2.line(img_merged_lines, (line[0][0], line[0][1]), (line[1][0],line[1][1]), (0,0,255), 6)
    
    
        cv2.imwrite('prediction/lines_gray.jpg',gray)
        cv2.imwrite('prediction/lines_thresh.jpg',thresh1)
        cv2.imwrite('prediction/lines_edges.jpg',edges)
        cv2.imwrite('prediction/lines_lines.jpg',img)
        cv2.imwrite('prediction/merged_lines.jpg',img_merged_lines)
    
        return merged_lines_all
    
    def merge_lines_pipeline_2(lines):
        super_lines_final = []
        super_lines = []
        min_distance_to_merge = 30
        min_angle_to_merge = 30
    
        for line in lines:
            create_new_group = True
            group_updated = False
    
            for group in super_lines:
                for line2 in group:
                    if get_distance(line2, line) < min_distance_to_merge:
                        # check the angle between lines       
                        orientation_i = math.atan2((line[0][1]-line[1][1]),(line[0][0]-line[1][0]))
                        orientation_j = math.atan2((line2[0][1]-line2[1][1]),(line2[0][0]-line2[1][0]))
    
                        if int(abs(abs(math.degrees(orientation_i)) - abs(math.degrees(orientation_j)))) < min_angle_to_merge: 
                            #print("angles", orientation_i, orientation_j)
                            #print(int(abs(orientation_i - orientation_j)))
                            group.append(line)
    
                            create_new_group = False
                            group_updated = True
                            break
    
                if group_updated:
                    break
    
            if (create_new_group):
                new_group = []
                new_group.append(line)
    
                for idx, line2 in enumerate(lines):
                    # check the distance between lines
                    if get_distance(line2, line) < min_distance_to_merge:
                        # check the angle between lines       
                        orientation_i = math.atan2((line[0][1]-line[1][1]),(line[0][0]-line[1][0]))
                        orientation_j = math.atan2((line2[0][1]-line2[1][1]),(line2[0][0]-line2[1][0]))
    
                        if int(abs(abs(math.degrees(orientation_i)) - abs(math.degrees(orientation_j)))) < min_angle_to_merge: 
                            #print("angles", orientation_i, orientation_j)
                            #print(int(abs(orientation_i - orientation_j)))
    
                            new_group.append(line2)
    
                            # remove line from lines list
                            #lines[idx] = False
                # append new group
                super_lines.append(new_group)
    
    
        for group in super_lines:
            super_lines_final.append(merge_lines_segments1(group))
    
        return super_lines_final
    
    def merge_lines_segments1(lines, use_log=False):
        if(len(lines) == 1):
            return lines[0]
    
        line_i = lines[0]
    
        # orientation
        orientation_i = math.atan2((line_i[0][1]-line_i[1][1]),(line_i[0][0]-line_i[1][0]))
    
        points = []
        for line in lines:
            points.append(line[0])
            points.append(line[1])
    
        if (abs(math.degrees(orientation_i)) > 45) and abs(math.degrees(orientation_i)) < (90+45):
    
            #sort by y
            points = sorted(points, key=lambda point: point[1])
    
            if use_log:
                print("use y")
        else:
    
            #sort by x
            points = sorted(points, key=lambda point: point[0])
    
            if use_log:
                print("use x")
    
        return [points[0], points[len(points)-1]]
    
    # https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html
    # https://stackoverflow.com/questions/32702075/what-would-be-the-fastest-way-to-find-the-maximum-of-all-possible-distances-betw
    def lines_close(line1, line2):
        dist1 = math.hypot(line1[0][0] - line2[0][0], line1[0][0] - line2[0][1])
        dist2 = math.hypot(line1[0][2] - line2[0][0], line1[0][3] - line2[0][1])
        dist3 = math.hypot(line1[0][0] - line2[0][2], line1[0][0] - line2[0][3])
        dist4 = math.hypot(line1[0][2] - line2[0][2], line1[0][3] - line2[0][3])
    
        if (min(dist1,dist2,dist3,dist4) < 100):
            return True
        else:
            return False
    
    def lineMagnitude (x1, y1, x2, y2):
        lineMagnitude = math.sqrt(math.pow((x2 - x1), 2)+ math.pow((y2 - y1), 2))
        return lineMagnitude
    
    #Calc minimum distance from a point and a line segment (i.e. consecutive vertices in a polyline).
    # https://nodedangles.wordpress.com/2010/05/16/measuring-distance-from-a-point-to-a-line-segment/
    # http://paulbourke.net/geometry/pointlineplane/
    def DistancePointLine(px, py, x1, y1, x2, y2):
        #http://local.wasp.uwa.edu.au/~pbourke/geometry/pointline/source.vba
        LineMag = lineMagnitude(x1, y1, x2, y2)
    
        if LineMag < 0.00000001:
            DistancePointLine = 9999
            return DistancePointLine
    
        u1 = (((px - x1) * (x2 - x1)) + ((py - y1) * (y2 - y1)))
        u = u1 / (LineMag * LineMag)
    
        if (u < 0.00001) or (u > 1):
            #// closest point does not fall within the line segment, take the shorter distance
            #// to an endpoint
            ix = lineMagnitude(px, py, x1, y1)
            iy = lineMagnitude(px, py, x2, y2)
            if ix > iy:
                DistancePointLine = iy
            else:
                DistancePointLine = ix
        else:
            # Intersecting point is on the line, use the formula
            ix = x1 + u * (x2 - x1)
            iy = y1 + u * (y2 - y1)
            DistancePointLine = lineMagnitude(px, py, ix, iy)
    
        return DistancePointLine
    
    def get_distance(line1, line2):
        dist1 = DistancePointLine(line1[0][0], line1[0][1], 
                                  line2[0][0], line2[0][1], line2[1][0], line2[1][1])
        dist2 = DistancePointLine(line1[1][0], line1[1][1], 
                                  line2[0][0], line2[0][1], line2[1][0], line2[1][1])
        dist3 = DistancePointLine(line2[0][0], line2[0][1], 
                                  line1[0][0], line1[0][1], line1[1][0], line1[1][1])
        dist4 = DistancePointLine(line2[1][0], line2[1][1], 
                                  line1[0][0], line1[0][1], line1[1][0], line1[1][1])
    
    
        return min(dist1,dist2,dist3,dist4)
    

    There are still 572 lines. After my "merging line segments" we have only 89 lines

    这篇关于如何在 HoughLinesP 之后合并行?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

    本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Reading *.mhd/*.raw format in python(在 python 中读取 *.mhd/*.raw 格式)
Count number of cells in the image(计算图像中的单元格数)
How to detect paragraphs in a text document image for a non-consistent text structure in Python OpenCV(如何在 Python OpenCV 中检测文本文档图像中的段落是否存在不一致的文本结构)
How to get the coordinates of the bounding box in YOLO object detection?(YOLO物体检测中如何获取边界框的坐标?)
Divide an image into 5x5 blocks in python and compute histogram for each block(在 python 中将图像划分为 5x5 块并计算每个块的直方图)
Extract cow number from image(从图像中提取奶牛编号)