OpenCV点目标检测未找到所有目标,并且找到的圆圈偏移

OpenCV dot target detection not finding all targets, and found circles are offset(OpenCV点目标检测未找到所有目标,并且找到的圆圈偏移)
本文介绍了OpenCV点目标检测未找到所有目标,并且找到的圆圈偏移的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我正在尝试检测黑/白点目标的中心,如图所示.我尝试使用 cv2.HoughCircles 方法,但 1,只能检测 2 到 3 个目标,2,当我将找到的圆圈重新绘制到图像上时,它们总是略微偏移.

I'm trying to detect the center of black/white dot targets, like in this picture. I've tried to use the cv2.HoughCircles method but 1, am only able to detect 2 to 3 targets, and 2, when I plot the found circles back onto the image, they're always offset slightly.

我是否使用了错误的方法?我应该使用 findContours 还是完全不同的东西?

Am I using the wrong method? Should I be using the findContours or something completely different?

这是我的代码:

import cv2
from cv2 import cv
import os
import numpy as np

def showme(pic):
    cv2.imshow('window',pic)
    cv2.waitKey()
    cv2.destroyAllWindows()


im=cv2.imread('small_test.jpg')

gray=cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

#I've tried blur,bw,tr...  all give me poor results.

blur = cv2.GaussianBlur(gray,(3,3),0)
n,bw = cv2.threshold(blur,120,255,cv2.THRESH_BINARY)
tr=cv2.adaptiveThreshold(blur,255,0,1,11,2)

circles = cv2.HoughCircles(gray, cv.CV_HOUGH_GRADIENT, 3, 100, None, 200, 100, 5, 16)

try:
    n = np.shape(circles)
    circles=np.reshape(circles,(n[1],n[2]))
    print circles
    for circle in circles:
        cv2.circle(im,(circle[0],circle[1]),circle[2],(0,0,255))
    showme(im)
except:
    print "no cicles found"

这是我当前的输出:

推荐答案

播放我在另一篇文章中写的代码,我能够取得稍微好一点的结果:

Playing the code I wrote in another post, I was able to achieve a slightly better result:

一切都与参数有关.始终如此.

您应该尝试在此程序中调用 3 个重要的函数:cvSmooth()cvCanny()cvHoughCircles().他们每个人都有可能彻底改变结果.

There are 3 important functions that are called in this program that you should experiment with: cvSmooth(), cvCanny(), and cvHoughCircles(). Each of them has the potential to change the result drastically.

这里是 C 代码:

IplImage* img = NULL;
if ((img = cvLoadImage(argv[1]))== 0)
{
    printf("cvLoadImage failed
");
}

IplImage* gray = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 1);
CvMemStorage* storage = cvCreateMemStorage(0);

cvCvtColor(img, gray, CV_BGR2GRAY);

// This is done so as to prevent a lot of false circles from being detected
cvSmooth(gray, gray, CV_GAUSSIAN, 7, 9);

IplImage* canny = cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1);
IplImage* rgbcanny = cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,3);
cvCanny(gray, canny, 40, 240, 3);

CvSeq* circles = cvHoughCircles(gray, storage, CV_HOUGH_GRADIENT, 2, gray->height/8, 120, 10, 2, 25);
cvCvtColor(canny, rgbcanny, CV_GRAY2BGR);

for (size_t i = 0; i < circles->total; i++)
{
     // round the floats to an int
     float* p = (float*)cvGetSeqElem(circles, i);
     cv::Point center(cvRound(p[0]), cvRound(p[1]));
     int radius = cvRound(p[2]);

     // draw the circle center
     cvCircle(rgbcanny, center, 3, CV_RGB(0,255,0), -1, 8, 0 );

     // draw the circle outline
     cvCircle(rgbcanny, center, radius+1, CV_RGB(0,0,255), 2, 8, 0 );

     printf("x: %d y: %d r: %d
",center.x,center.y, radius);
}

cvNamedWindow("circles", 1);
cvShowImage("circles", rgbcanny);

cvSaveImage("out.png", rgbcanny);
cvWaitKey(0);

我相信你有能力将它移植到 Python.

I trust you have the skills to port this to Python.

这篇关于OpenCV点目标检测未找到所有目标,并且找到的圆圈偏移的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

Reading *.mhd/*.raw format in python(在 python 中读取 *.mhd/*.raw 格式)
Count number of cells in the image(计算图像中的单元格数)
How to detect paragraphs in a text document image for a non-consistent text structure in Python OpenCV(如何在 Python OpenCV 中检测文本文档图像中的段落是否存在不一致的文本结构)
How to get the coordinates of the bounding box in YOLO object detection?(YOLO物体检测中如何获取边界框的坐标?)
Divide an image into 5x5 blocks in python and compute histogram for each block(在 python 中将图像划分为 5x5 块并计算每个块的直方图)
Extract cow number from image(从图像中提取奶牛编号)