使用 OpenCV 和 SIFT/SURF 校正扫描图像以匹配原始图像

Deskewing scanned image to match original image using OpenCV and SIFT/SURF(使用 OpenCV 和 SIFT/SURF 校正扫描图像以匹配原始图像)
本文介绍了使用 OpenCV 和 SIFT/SURF 校正扫描图像以匹配原始图像的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我有一个数字形式的原始页面和同一页面的多个扫描版本.我的目标是对扫描的页面进行纠偏,使其尽可能与原始页面匹配.我知道我可以使用

解决方案

原来我非常接近解决自己的问题.这是我的代码的工作版本:

将 numpy 导入为 np导入简历2从 matplotlib 导入 pyplot 作为 plt导入数学def 纠偏():im_out = cv2.warpPerspective(skewed_image, np.linalg.inv(M), (orig_image.shape[1], orig_image.shape[0]))plt.imshow(im_out, '灰色')plt.show()orig_image = cv2.imread(r'image.png', 0)skewed_image = cv2.imread(r'imageSkewed.png', 0)冲浪 = cv2.xfeatures2d.SURF_create(400)kp1, des1 = surf.detectAndCompute(orig_image, None)kp2, des2 = surf.detectAndCompute(skewed_image, 无)FLANN_INDEX_KDTREE = 0index_params = dict(算法=FLANN_INDEX_KDTREE,树=5)search_params = dict(检查=50)flann = cv2.FlannBasedMatcher(index_params, search_params)匹配 = flann.knnMatch(des1, des2, k=2)# 根据劳氏比率测试存储所有好的匹配.好=[]对于 m,n 匹配:如果 m.distance <0.7 * n.距离:好.追加(米)MIN_MATCH_COUNT = 10如果 len(good) >MIN_MATCH_COUNT 个:src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)M, 掩码 = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)# 详见 https://ch.mathworks.com/help/images/examples/find-image-rotation-and-scale-using-automated-feature-matching.htmlss = M[0, 1]sc = M[0, 0]scaleRecovered = math.sqrt(ss * ss + sc * sc)thetaRecovered = math.atan2(ss, sc) * 180/math.piprint("计算的比例差:%.2f
计算的旋转差:%.2f" % (scaleRecovered, thetaRecovered))纠偏()别的:print("没有找到足够的匹配 - %d/%d" % (len(good), MIN_MATCH_COUNT))匹配掩码 = 无

I have an original page in digital form and several scanned versions of the same page. My goal is to deskew the scanned pages such that they match the original page as much as possible. I know that I could use the Probabilistic Hough Transform as described here for fixing the rotation but the scanned papers also differ in size as some people scaled the page to a different paper format. I think that the findHomography() function in OpenCV in combination with the keypoints from SIFT/SURF are exactly what I need to solve this problem. However, I just can't get my deskew() function to work.

Most of my code stems from the following two sources: http://www.learnopencv.com/homography-examples-using-opencv-python-c/ and http://docs.opencv.org/3.1.0/d1/de0/tutorial_py_feature_homography.html.

import numpy as np
import cv2
from matplotlib import pyplot as plt


# FIXME: doesn't work
def deskew():
    im_out = cv2.warpPerspective(img1, M, (img2.shape[1], img2.shape[0]))
    plt.imshow(im_out, 'gray')
    plt.show()


# resizing images to improve speed
factor = 0.4
img1 = cv2.resize(cv2.imread("image.png", 0), None, fx=factor, fy=factor, interpolation=cv2.INTER_CUBIC)
img2 = cv2.resize(cv2.imread("imageSkewed.png", 0), None, fx=factor, fy=factor, interpolation=cv2.INTER_CUBIC)

surf = cv2.xfeatures2d.SURF_create()
kp1, des1 = surf.detectAndCompute(img1, None)
kp2, des2 = surf.detectAndCompute(img2, None)

FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)

# store all the good matches as per Lowe's ratio test.
good = []
for m, n in matches:
    if m.distance < 0.7 * n.distance:
        good.append(m)

MIN_MATCH_COUNT = 10
if len(good) > MIN_MATCH_COUNT:
    src_pts = np.float32([kp1[m.queryIdx].pt for m in good
                          ]).reshape(-1, 1, 2)
    dst_pts = np.float32([kp2[m.trainIdx].pt for m in good
                          ]).reshape(-1, 1, 2)

    M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
    matchesMask = mask.ravel().tolist()
    h, w = img1.shape
    pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)
    dst = cv2.perspectiveTransform(pts, M)

    deskew()

    img2 = cv2.polylines(img2, [np.int32(dst)], True, 255, 3, cv2.LINE_AA)
else:
    print("Not  enough  matches are found   -   %d/%d" % (len(good), MIN_MATCH_COUNT))
    matchesMask = None

# show matching keypoints
draw_params = dict(matchColor=(0, 255, 0),  # draw  matches in  green   color
                   singlePointColor=None,
                   matchesMask=matchesMask,  # draw only    inliers
                   flags=2)
img3 = cv2.drawMatches(img1, kp1, img2, kp2, good, None, **draw_params)
plt.imshow(img3, 'gray')
plt.show()

解决方案

Turns out I was very close to solving my own problem. Here's the working version of my code:

import numpy as np
import cv2
from matplotlib import pyplot as plt
import math


def deskew():
    im_out = cv2.warpPerspective(skewed_image, np.linalg.inv(M), (orig_image.shape[1], orig_image.shape[0]))
    plt.imshow(im_out, 'gray')
    plt.show()

orig_image = cv2.imread(r'image.png', 0)
skewed_image = cv2.imread(r'imageSkewed.png', 0)

surf = cv2.xfeatures2d.SURF_create(400)
kp1, des1 = surf.detectAndCompute(orig_image, None)
kp2, des2 = surf.detectAndCompute(skewed_image, None)

FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)

# store all the good matches as per Lowe's ratio test.
good = []
for m, n in matches:
    if m.distance < 0.7 * n.distance:
        good.append(m)

MIN_MATCH_COUNT = 10
if len(good) > MIN_MATCH_COUNT:
    src_pts = np.float32([kp1[m.queryIdx].pt for m in good
                          ]).reshape(-1, 1, 2)
    dst_pts = np.float32([kp2[m.trainIdx].pt for m in good
                          ]).reshape(-1, 1, 2)

    M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)

    # see https://ch.mathworks.com/help/images/examples/find-image-rotation-and-scale-using-automated-feature-matching.html for details
    ss = M[0, 1]
    sc = M[0, 0]
    scaleRecovered = math.sqrt(ss * ss + sc * sc)
    thetaRecovered = math.atan2(ss, sc) * 180 / math.pi
    print("Calculated scale difference: %.2f
Calculated rotation difference: %.2f" % (scaleRecovered, thetaRecovered))

    deskew()

else:
    print("Not  enough  matches are found   -   %d/%d" % (len(good), MIN_MATCH_COUNT))
    matchesMask = None

这篇关于使用 OpenCV 和 SIFT/SURF 校正扫描图像以匹配原始图像的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

cv2.approxPolyDP() , cv2.arcLength() How these works(cv2.approxPolyDP() , cv2.arcLength() 这些是如何工作的)
How To Detect Red Color In OpenCV Python?(如何在 OpenCV Python 中检测红色?)
Distance between 2 pixels(2个像素之间的距离)
How to get length of each side of a shape in an image?(如何获取图像中形状每一边的长度?)
How to upload dataset in google colaboratory?(如何在谷歌合作实验室上传数据集?)
Fast and Robust Image Stitching Algorithm for many images in Python?(Python中许多图像的快速而强大的图像拼接算法?)