问题描述
我正在寻找一种与 SQL 等效的方法
I'm looking for a way to do the equivalent to the SQL
SELECT DISTINCT col1, col2 FROM dataframe_table
pandas sql 比较没有关于 distinct
的任何内容.
The pandas sql comparison doesn't have anything about distinct
.
.unique()
仅适用于单个列,所以我想我可以连接这些列,或者将它们放在列表/元组中并以这种方式进行比较,但这似乎是熊猫应该做的以更本土的方式进行.
.unique()
only works for a single column, so I suppose I could concat the columns, or put them in a list/tuple and compare that way, but this seems like something pandas should do in a more native way.
我是否遗漏了一些明显的东西,或者没有办法做到这一点?
Am I missing something obvious, or is there no way to do this?
推荐答案
您可以使用drop_duplicates
方法来获取 DataFrame 中的唯一行:
You can use the drop_duplicates
method to get the unique rows in a DataFrame:
In [29]: df = pd.DataFrame({'a':[1,2,1,2], 'b':[3,4,3,5]})
In [30]: df
Out[30]:
a b
0 1 3
1 2 4
2 1 3
3 2 5
In [32]: df.drop_duplicates()
Out[32]:
a b
0 1 3
1 2 4
3 2 5
如果您只想使用某些列来确定唯一性,您还可以提供 subset
关键字参数.请参阅文档字符串.
You can also provide the subset
keyword argument if you only want to use certain columns to determine uniqueness. See the docstring.
这篇关于如何“选择不同的"?跨越 pandas 中的多个数据框列?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!