itertools中chain和chain.from_iterable有什么区别?

What is the difference between chain and chain.from_iterable in itertools?(itertools中chain和chain.from_iterable有什么区别?)
本文介绍了itertools中chain和chain.from_iterable有什么区别?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我在互联网上找不到任何有效的例子,我可以看到它们之间的区别以及为什么要选择一个而不是另一个.

I could not find any valid example on the internet where I can see the difference between them and why to choose one over the other.

推荐答案

第一个接受 0 个或多个参数,每个参数是一个可迭代对象,第二个接受一个预期生成可迭代对象的参数:

The first takes 0 or more arguments, each an iterable, the second one takes one argument which is expected to produce the iterables:

from itertools import chain

chain(list1, list2, list3)

iterables = [list1, list2, list3]
chain.from_iterable(iterables)

iterables 可以是任何产生可迭代对象的迭代器:

but iterables can be any iterator that yields the iterables:

def gen_iterables():
    for i in range(10):
        yield range(i)

itertools.chain.from_iterable(gen_iterables())

使用第二种形式通常是一种方便的情况,但由于它会延迟循环输入可迭代对象,因此它也是链接无限个有限迭代器的唯一方法:

Using the second form is usually a case of convenience, but because it loops over the input iterables lazily, it is also the only way you can chain an infinite number of finite iterators:

def gen_iterables():
    while True:
        for i in range(5, 10):
            yield range(i)

chain.from_iterable(gen_iterables())

上面的例子将给你一个迭代,它产生一个循环的数字模式,它永远不会停止,但永远不会消耗比单个 range() 调用所需更多的内存.

The above example will give you a iterable that yields a cyclic pattern of numbers that will never stop, but will never consume more memory than what a single range() call requires.

这篇关于itertools中chain和chain.from_iterable有什么区别?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

python: iterating through a dictionary with list values(python:遍历具有列表值的字典)
python JSON only get keys in first level(python JSON只获取第一级的键)
Iterate over n successive elements of list (with overlapping)(迭代列表的 n 个连续元素(重叠))
Loop problem while iterating through a list and removing recurring elements(遍历列表并删除重复元素时出现循环问题)
Elegant way to skip elements in an iterable(跳过可迭代元素的优雅方式)
#39;numpy.float64#39; object is not iterable(numpy.float64 对象不可迭代)