如何在 Pandas DataFrame 上计算滚动累积乘积

How to calculate rolling cumulative product on Pandas DataFrame(如何在 Pandas DataFrame 上计算滚动累积乘积)
本文介绍了如何在 Pandas DataFrame 上计算滚动累积乘积的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我在 pandas DataFrame 中有一个时间序列的回报、滚动 beta 和滚动 alpha.如何计算 DataFrame 的 alpha 列的滚动年化 alpha?(我想做相当于=PRODUCT(1+[trailing 12 months])-1 in excel)

I have a time series of returns, rolling beta, and rolling alpha in a pandas DataFrame. How can I calculate a rolling annualized alpha for the alpha column of the DataFrame? (I want to do the equivalent to =PRODUCT(1+[trailing 12 months])-1 in excel)

            SPX Index BBOEGEUS Index    Beta      Alpha
2006-07-31   0.005086    0.001910    1.177977   -0.004081
2006-08-31   0.021274    0.028854    1.167670    0.004012
2006-09-30   0.024566    0.009769    1.101618   -0.017293
2006-10-31   0.031508    0.030692    1.060355   -0.002717
2006-11-30   0.016467    0.031720    1.127585    0.013153

我很惊讶地发现 pandas 中没有为此内置滚动"功能,但我希望有人可以提供一个功能,然后我可以使用 pd.rolling_apply 将其应用于 df['Alpha'] 列.

I was surprised to see that there was no "rolling" function built into pandas for this, but I was hoping somebody could help with a function that I can then apply to the df['Alpha'] column using pd.rolling_apply.

提前感谢您提供的任何帮助.

Thanks in advance for any help you have to offer.

推荐答案

这样可以吗?

import pandas as pd
import numpy as np

# your DataFrame; df = ...

pd.rolling_apply(df, 12, lambda x: np.prod(1 + x) - 1)

这篇关于如何在 Pandas DataFrame 上计算滚动累积乘积的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

python arbitrarily incrementing an iterator inside a loop(python在循环内任意递增迭代器)
Joining a set of ordered-integer yielding Python iterators(加入一组产生 Python 迭代器的有序整数)
Iterating over dictionary items(), values(), keys() in Python 3(在 Python 3 中迭代字典 items()、values()、keys())
What is the Perl version of a Python iterator?(Python 迭代器的 Perl 版本是什么?)
How to create a generator/iterator with the Python C API?(如何使用 Python C API 创建生成器/迭代器?)
Python generator behaviour(Python 生成器行为)