OMP:错误 #15:正在初始化 libiomp5.dylib,但发现 libiomp5.dylib 已初始化

OMP: Error #15: Initializing libiomp5.dylib, but found libiomp5.dylib already initialized(OMP:错误 #15:正在初始化 libiomp5.dylib,但发现 libiomp5.dylib 已初始化)
本文介绍了OMP:错误 #15:正在初始化 libiomp5.dylib,但发现 libiomp5.dylib 已初始化的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我正在尝试运行一个测试程序来检查我的 Anaconda 环境是否配置正确.但是,当我运行我的测试程序时,我会在程序设置图形时收到此错误消息(准确地说是 on_train_end() 回调):

I'm trying to run a test program to check if my Anaconda environment is configured correctly. However, when I run my test program I get this error message when the program is setting up graph (on_train_end() callback to be precise):

OMP:错误 #15:正在初始化 libiomp5.dylib,但找到了 libiomp5.dylib已经初始化.OMP:提示 这意味着 OpenMP 运行时的多个副本已经存在,因为它会降低性能或导致不正确的结果.最好的办法是确保只有一个 OpenMP 运行时链接到进程中,例如通过避免在任何库中静态链接 OpenMP 运行时.作为一种不安全、不受支持、未记录的解决方法,您可以设置环境变量 KMP_DUPLICATE_LIB_OK=TRUE 以允许程序继续执行,但这可能会导致崩溃或默默地产生不正确的结果.如需更多信息,请参阅 http://www.intel.com/software/products/support/.

OMP: Error #15: Initializing libiomp5.dylib, but found libiomp5.dylib already initialized. OMP: Hint This means that multiple copies of the OpenMP runtime have been since it can degrade performance or cause incorrect results. The best thing to do is to ensure that only a single OpenMP runtime is linked into the process, e.g. by avoiding static linking of the OpenMP runtime in any library. As an unsafe, unsupported, undocumented workaround you can set the environment variable KMP_DUPLICATE_LIB_OK=TRUE to allow the program to continue to execute, but that may cause crashes or silently produce incorrect results. For more information, please see http://www.intel.com/software/products/support/.

我正在安装 macOS Mojave 10.14.1 的 MacBook Pro 15" 2015 上运行测试程序.我目前安装的 Anaconda 发行版是 https://repo.anaconda.com/archive/Anaconda2-5.3.0-MacOSX-x86_64.sh.

I'm running the test program on my MacBook Pro 15" 2015 where it is installed macOS Mojave 10.14.1. The Anaconda distribution that I have currently installed is https://repo.anaconda.com/archive/Anaconda2-5.3.0-MacOSX-x86_64.sh.

这是测试程序:

#!/usr/bin/env python

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

from tensorflow import keras

Xs = np.array([
    [0, 0],
    [0, 1],
    [1, 1],
    [1, 0]
])

Ys = np.array([
    [0],
    [1],
    [0],
    [1]
])

class MyCallback(keras.callbacks.Callback):
    def __init__(self):
        super(MyCallback, self).__init__()
        self.stats = []

    def on_epoch_end(self, epoch, logs=None):
        self.stats.append({
            'loss': logs['loss'],
            'acc': logs['acc'],
            'epoch': epoch
        })

    def on_train_end(self, logs=None):
        loss_x = []
        loss_y = []
        acc_x = []
        acc_y = []
        for e in self.stats:
            loss_x.append(e['epoch'])
            loss_y.append(e['loss'])
            acc_x.append(e['epoch'])
            acc_y.append(e['acc'])
        plt.plot(loss_x, loss_y, 'r', label='Loss')
        plt.plot(acc_x, acc_y, 'b', label='Accuracy')
        plt.xlabel('Epochs')
        plt.ylabel('Loss / Accuracy')
        plt.legend(loc='upper left')
        plt.show()

with tf.Session() as session:
    model = keras.models.Sequential()

    model.add(keras.layers.Dense(10, activation=keras.activations.elu, input_dim=2))
    model.add(keras.layers.Dense(1, activation=keras.activations.sigmoid))

    model.compile(optimizer=keras.optimizers.Adam(lr=0.05),
                  loss=keras.losses.mean_squared_error,
                  metrics=['accuracy'])

    model.fit(x=Xs, y=Ys, batch_size=4, epochs=50, callbacks=[MyCallback()])

    print("Training complete")

    loss, acc = model.evaluate(Xs, Ys)

    print(f"loss: {loss} - acc: {acc}")

    predictions = model.predict(Xs)

    print("predictions")
    print(predictions)

我已经尝试参考 答案initial">this 相关问题.因此,在 import 部分之后添加以下代码行:

I already tried to fix the issue referencing to the answer of this related question. Thus, adding the following lines of code after the import section:

import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

我得到的是另一个错误消息,这是完整的堆栈跟踪:

What I get is another error message, this is the full stack trace:

2018-12-06 10:18:34.262 python[19319:371282] -[NSApplication _setup:]: unrecognized selector sent to instance 0x7ff2b07a3d00
2018-12-06 10:18:34.266 python[19319:371282] *** Terminating app due to uncaught exception 'NSInvalidArgumentException', reason: '-[NSApplication _setup:]: unrecognized selector sent to instance 0x7ff2b07a3d00'
*** First throw call stack:
(
        0   CoreFoundation                      0x00007fff2ccf0e65 __exceptionPreprocess + 256
        1   libobjc.A.dylib                     0x00007fff58d47720 objc_exception_throw + 48
        2   CoreFoundation                      0x00007fff2cd6e22d -[NSObject(NSObject) __retain_OA] + 0
        3   CoreFoundation                      0x00007fff2cc92820 ___forwarding___ + 1486
        4   CoreFoundation                      0x00007fff2cc921c8 _CF_forwarding_prep_0 + 120
        5   libtk8.6.dylib                      0x0000000b36aeb31d TkpInit + 413
        6   libtk8.6.dylib                      0x0000000b36a4317e Initialize + 2622
        7   _tkinter.cpython-36m-darwin.so      0x0000000b3686ba16 _tkinter_create + 1174
        8   python                              0x000000010571c088 _PyCFunction_FastCallDict + 200
        9   python                              0x00000001057f2f4f call_function + 143
        10  python                              0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
        11  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        12  python                              0x00000001057f3b1c _PyFunction_FastCallDict + 364
        13  python                              0x000000010569a8b0 _PyObject_FastCallDict + 320
        14  python                              0x00000001056c1fe8 method_call + 136
        15  python                              0x00000001056a1efe PyObject_Call + 62
        16  python                              0x0000000105743385 slot_tp_init + 117
        17  python                              0x00000001057478c1 type_call + 241
        18  python                              0x000000010569a821 _PyObject_FastCallDict + 177
        19  python                              0x00000001056a2a67 _PyObject_FastCallKeywords + 327
        20  python                              0x00000001057f3048 call_function + 392
        21  python                              0x00000001057f0b6f _PyEval_EvalFrameDefault + 47023
        22  python                              0x00000001057f330c fast_function + 188
        23  python                              0x00000001057f2fac call_function + 236
        24  python                              0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
        25  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        26  python                              0x00000001057f3b1c _PyFunction_FastCallDict + 364
        27  python                              0x000000010569a8b0 _PyObject_FastCallDict + 320
        28  python                              0x00000001056c1fe8 method_call + 136
        29  python                              0x00000001056a1efe PyObject_Call + 62
        30  python                              0x00000001057f0cc0 _PyEval_EvalFrameDefault + 47360
        31  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        32  python                              0x00000001057f33ba fast_function + 362
        33  python                              0x00000001057f2fac call_function + 236
        34  python                              0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
        35  python                              0x00000001057f330c fast_function + 188
        36  python                              0x00000001057f2fac call_function + 236
        37  python                              0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
        38  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        39  python                              0x00000001057f33ba fast_function + 362
        40  python                              0x00000001057f2fac call_function + 236
        41  python                              0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
        42  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        43  python                              0x00000001057f33ba fast_function + 362
        44  python                              0x00000001057f2fac call_function + 236
        45  python                              0x00000001057f0b6f _PyEval_EvalFrameDefault + 47023
        46  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        47  python                              0x00000001057f33ba fast_function + 362
        48  python                              0x00000001057f2fac call_function + 236
        49  python                              0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
        50  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        51  python                              0x00000001057f33ba fast_function + 362
        52  python                              0x00000001057f2fac call_function + 236
        53  python                              0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
        54  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        55  python                              0x00000001057f33ba fast_function + 362
        56  python                              0x00000001057f2fac call_function + 236
        57  python                              0x00000001057f0b6f _PyEval_EvalFrameDefault + 47023
        58  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        59  python                              0x00000001057f33ba fast_function + 362
        60  python                              0x00000001057f2fac call_function + 236
        61  python                              0x00000001057f0b6f _PyEval_EvalFrameDefault + 47023
        62  python                              0x00000001057e4209 _PyEval_EvalCodeWithName + 425
        63  python                              0x000000010583cd4c PyRun_FileExFlags + 252
        64  python                              0x000000010583c224 PyRun_SimpleFileExFlags + 372
        65  python                              0x0000000105862d66 Py_Main + 3734
        66  python                              0x0000000105692929 main + 313
        67  libdyld.dylib                       0x00007fff59e1608d start + 1
        68  ???                                 0x0000000000000002 0x0 + 2
)
libc++abi.dylib: terminating with uncaught exception of type NSException

这里是环境中安装的相关依赖的列表(不相关的依赖为了简洁省略):

Here is a list of the related dependencies installed in the environment (not related dependencies are omitted for brevity):

Name                |     Version                      Build
--------------------|----------------|----------------------
_tflow_select       |     2.3.0      |                   mkl
blas                |     1.0        |                   mkl
intel-openmp        |     2019.1     |                   144
matplotlib          |     3.0.1      |        py36h54f8f79_0
mkl                 |     2018.0.3   |                     1
mkl_fft             |     1.0.6      |        py36hb8a8100_0
mkl_random          |     1.0.1      |        py36h5d10147_1
numpy               |     1.15.4     |        py36h6a91979_0
numpy-base          |     1.15.4     |        py36h8a80b8c_0
tensorboard         |     1.12.0     |        py36hdc36e2c_0
tensorflow          |     1.12.0     |    mkl_py36h2b2bbaf_0
tensorflow-base     |     1.12.0     |    mkl_py36h70e0e9a_0

推荐答案

在大多数情况下,这样可以解决问题:

In most cases, this solves the problem:

conda install nomkl

这篇关于OMP:错误 #15:正在初始化 libiomp5.dylib,但发现 libiomp5.dylib 已初始化的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!

相关文档推荐

python arbitrarily incrementing an iterator inside a loop(python在循环内任意递增迭代器)
Joining a set of ordered-integer yielding Python iterators(加入一组产生 Python 迭代器的有序整数)
Iterating over dictionary items(), values(), keys() in Python 3(在 Python 3 中迭代字典 items()、values()、keys())
What is the Perl version of a Python iterator?(Python 迭代器的 Perl 版本是什么?)
How to create a generator/iterator with the Python C API?(如何使用 Python C API 创建生成器/迭代器?)
Python generator behaviour(Python 生成器行为)