将 pandas 数据框列导入为字符串而不是 int

Import pandas dataframe column as string not int(将 pandas 数据框列导入为字符串而不是 int)
本文介绍了将 pandas 数据框列导入为字符串而不是 int的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我想将以下 csv 作为字符串而不是 int64 导入.Pandas read_csv 自动将其转换为 int64,但我需要此列作为字符串.

I would like to import the following csv as strings not as int64. Pandas read_csv automatically converts it to int64, but I need this column as string.

ID
00013007854817840016671868
00013007854817840016749251
00013007854817840016754630
00013007854817840016781876
00013007854817840017028824
00013007854817840017963235
00013007854817840018860166


df = read_csv('sample.csv')

df.ID
>>

0   -9223372036854775808
1   -9223372036854775808
2   -9223372036854775808
3   -9223372036854775808
4   -9223372036854775808
5   -9223372036854775808
6   -9223372036854775808
Name: ID

不幸的是,使用转换器会得到相同的结果.

Unfortunately using converters gives the same result.

df = read_csv('sample.csv', converters={'ID': str})
df.ID
>>

0   -9223372036854775808
1   -9223372036854775808
2   -9223372036854775808
3   -9223372036854775808
4   -9223372036854775808
5   -9223372036854775808
6   -9223372036854775808
Name: ID

推荐答案

只是想重申这将适用于 pandas >= 0.9.1:

Just want to reiterate this will work in pandas >= 0.9.1:

In [2]: read_csv('sample.csv', dtype={'ID': object})
Out[2]: 
                           ID
0  00013007854817840016671868
1  00013007854817840016749251
2  00013007854817840016754630
3  00013007854817840016781876
4  00013007854817840017028824
5  00013007854817840017963235
6  00013007854817840018860166

我也在创建一个关于检测整数溢出的问题.

I'm creating an issue about detecting integer overflows also.

在此处查看解决方案:https://github.com/pydata/pandas/issues/2247

更新,因为它可以帮助他人:

Update as it helps others:

要将所有列作为str,可以这样做(来自评论):

To have all columns as str, one can do this (from the comment):

pd.read_csv('sample.csv', dtype = str)

要将大多数或选择性列作为str,可以这样做:

To have most or selective columns as str, one can do this:

# lst of column names which needs to be string
lst_str_cols = ['prefix', 'serial']
# use dictionary comprehension to make dict of dtypes
dict_dtypes = {x : 'str'  for x in lst_str_cols}
# use dict on dtypes
pd.read_csv('sample.csv', dtype=dict_dtypes)

这篇关于将 pandas 数据框列导入为字符串而不是 int的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

Multiprocessing on Windows breaks(Windows 上的多处理中断)
How to use a generator as an iterable with Multiprocessing map function(如何将生成器用作具有多处理映射功能的可迭代对象)
read multiple files using multiprocessing(使用多处理读取多个文件)
Why does importing module in #39;__main__#39; not allow multiprocessig to use module?(为什么在__main__中导入模块不允许multiprocessig使用模块?)
Trouble using a lock with multiprocessing.Pool: pickling error(使用带有 multiprocessing.Pool 的锁时遇到问题:酸洗错误)
Python sharing a dictionary between parallel processes(Python 在并行进程之间共享字典)