问题描述
我正在尝试实现这个多处理 教程 用于我自己的目的.起初我认为它不能很好地扩展,但是当我做了一个可重现的例子时,我发现如果项目列表超过 124,它似乎永远不会返回答案.在 x = 124
处,它在 0.4 秒内运行,但是当我将其设置为 x = 125
时,它永远不会完成.我在 Windows 7 上运行 Python 2.7.
I am trying to implement this multiprocessing tutorial for my own purposes. At first I thought it did not scale well, but when I made a reproducible example I found that if the list of items goes above 124, it seems to never return an answer. At x = 124
it runs in .4 seconds, but when I set it to x = 125
it never finishes. I am running Python 2.7 on Windows 7.
from multiprocessing import Lock, Process, Queue, current_process
import time
class Testclass(object):
def __init__(self, x):
self.x = x
def toyfunction(testclass):
testclass.product = testclass.x * testclass.x
return testclass
def worker(work_queue, done_queue):
try:
for testclass in iter(work_queue.get, 'STOP'):
print(testclass.counter)
newtestclass = toyfunction(testclass)
done_queue.put(newtestclass)
except:
print('error')
return True
def main(x):
counter = 1
database = []
while counter <= x:
database.append(Testclass(10))
counter += 1
print(counter)
workers = 8
work_queue = Queue()
done_queue = Queue()
processes = []
start = time.clock()
counter = 1
for testclass in database:
testclass.counter = counter
work_queue.put(testclass)
counter += 1
print(counter)
print('items loaded')
for w in range(workers):
p = Process(target=worker, args=(work_queue, done_queue))
p.start()
processes.append(p)
work_queue.put('STOP')
for p in processes:
p.join()
done_queue.put('STOP')
newdatabase = []
for testclass in iter(done_queue.get, 'STOP'):
newdatabase.append(testclass)
print(time.clock()-start)
print("Done")
return(newdatabase)
if __name__ == '__main__':
database = main(124)
database2 = main(125)
推荐答案
好的!来自文档:
警告如上所述,如果子进程已将项目放入队列中(并且它没有使用 JoinableQueue.cancel_join_thread),那么该进程将不会终止,直到所有缓冲的项目已被刷新到管道.这意味着如果您尝试加入该进程,除非您确定,否则您可能会遇到死锁已放入队列的所有项目都已被消耗.同样,如果子进程是非守护进程,然后父进程可能会在尝试退出时挂起加入其所有非恶魔的孩子.请注意,使用管理器创建的队列确实没有这个问题.请参阅编程指南.
Warning As mentioned above, if a child process has put items on a queue (and it has not used JoinableQueue.cancel_join_thread), then that process will not terminate until all buffered items have been flushed to the pipe. This means that if you try joining that process you may get a deadlock unless you are sure that all items which have been put on the queue have been consumed. Similarly, if the child process is non-daemonic then the parent process may hang on exit when it tries to join all its non-daemonic children. Note that a queue created using a manager does not have this issue. See Programming guidelines.
正如我在前面的评论中指出的,代码尝试 .join()
处理 before done_queue
队列耗尽 - 并且在以一种时髦的方式更改代码以确保在 .join()
之前耗尽了 done_queue
之后,代码对一百万个项目运行良好.
As I noted in a comment earlier, the code attempts to .join()
processes before the done_queue
Queue is drained - and that after changing the code in a funky way to be sure done_queue
was drained before .join()
'ing, the code worked fine for a million items.
所以这是一个飞行员错误的例子,虽然很模糊.至于为什么行为取决于传递给 main(x)
的数字,这是不可预测的:它取决于内部缓冲是如何完成的.真有趣;-)
So this is a case of pilot error, although quite obscure. As to why behavior depends on the number passed to main(x)
, it's unpredictable: it depends on how buffering is done internally. Such fun ;-)
这篇关于Python 多处理 >= 125 列表永远不会完成的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!