在 Python 中并行化四个嵌套循环

Parallelizing four nested loops in Python(在 Python 中并行化四个嵌套循环)
本文介绍了在 Python 中并行化四个嵌套循环的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我有一个相当简单的嵌套 for 循环,它遍历四个数组:

I have a fairly straightforward nested for loop that iterates over four arrays:

for a in a_grid:
    for b in b_grid:
        for c in c_grid:
            for d in d_grid:
                do_some_stuff(a,b,c,d)  # perform calculations and write to file

也许这并不是在 4D 网格上执行计算的最有效方式.我知道 joblib 能够并行化两个嵌套的 for 循环,例如 this,但我无法将其推广到四个嵌套循环.有什么想法吗?

Maybe this isn't the most efficient way to perform calculations over a 4D grid to begin with. I know joblib is capable of parallelizing two nested for loops like this, but I'm having trouble generalizing it to four nested loops. Any ideas?

推荐答案

我通常使用这种形式的代码:

I usually use code of this form:

#!/usr/bin/env python3
import itertools
import multiprocessing

#Generate values for each parameter
a = range(10)
b = range(10)
c = range(10)
d = range(10)

#Generate a list of tuples where each tuple is a combination of parameters.
#The list will contain all possible combinations of parameters.
paramlist = list(itertools.product(a,b,c,d))

#A function which will process a tuple of parameters
def func(params):
  a = params[0]
  b = params[1]
  c = params[2]
  d = params[3]
  return a*b*c*d

#Generate processes equal to the number of cores
pool = multiprocessing.Pool()

#Distribute the parameter sets evenly across the cores
res  = pool.map(func,paramlist)

这篇关于在 Python 中并行化四个嵌套循环的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

build conda package from local python package(从本地 python 包构建 conda 包)
How can I see all packages that depend on a certain package with PIP?(如何使用 PIP 查看依赖于某个包的所有包?)
How to organize multiple python files into a single module without it behaving like a package?(如何将多个 python 文件组织到一个模块中而不像一个包一样?)
Check if requirements are up to date(检查要求是否是最新的)
How to upload new versions of project to PyPI with twine?(如何使用 twine 将新版本的项目上传到 PyPI?)
Why #egg=foo when pip-installing from git repo(为什么从 git repo 进行 pip 安装时 #egg=foo)