问题描述
我有一个当前正在运行的模拟,但 ETA 大约需要 40 小时 - 我正在尝试通过多处理来加速它.
I have a simulation that is currently running, but the ETA is about 40 hours -- I'm trying to speed it up with multi-processing.
它本质上迭代了一个变量 (L) 的 3 个值,以及第二个变量 (a) 的 99 个值.使用这些值,它实际上运行了一个复杂的模拟并返回 9 个不同的标准偏差.因此(尽管我还没有这样编码)它本质上是一个函数,它接受两个值作为输入 (L,a) 并返回 9 个值.
It essentially iterates over 3 values of one variable (L), and over 99 values of of a second variable (a). Using these values, it essentially runs a complex simulation and returns 9 different standard deviations. Thus (even though I haven't coded it that way yet) it is essentially a function that takes two values as inputs (L,a) and returns 9 values.
这是我拥有的代码的精髓:
Here is the essence of the code I have:
STD_1 = []
STD_2 = []
# etc.
for L in range(0,6,2):
for a in range(1,100):
### simulation code ###
STD_1.append(value_1)
STD_2.append(value_2)
# etc.
以下是我可以修改的内容:
Here is what I can modify it to:
master_list = []
def simulate(a,L):
### simulation code ###
return (a,L,STD_1, STD_2 etc.)
for L in range(0,6,2):
for a in range(1,100):
master_list.append(simulate(a,L))
由于每个模拟都是独立的,因此它似乎是实现某种多线程/处理的理想场所.
Since each of the simulations are independent, it seems like an ideal place to implement some sort of multi-threading/processing.
我将如何编写这个代码?
How exactly would I go about coding this?
另外,是否所有内容都会按顺序返回到主列表,或者如果多个进程正在工作,它可能会出现故障?
Also, will everything be returned to the master list in order, or could it possibly be out of order if multiple processes are working?
编辑 2:这是我的代码——但它运行不正确.它询问我是否想在我运行程序后立即终止它.
EDIT 2: This is my code -- but it doesn't run correctly. It asks if I want to kill the program right after I run it.
import multiprocessing
data = []
for L in range(0,6,2):
for a in range(1,100):
data.append((L,a))
print (data)
def simulation(arg):
# unpack the tuple
a = arg[1]
L = arg[0]
STD_1 = a**2
STD_2 = a**3
STD_3 = a**4
# simulation code #
return((STD_1,STD_2,STD_3))
print("1")
p = multiprocessing.Pool()
print ("2")
results = p.map(simulation, data)
编辑 3:还有什么是多处理的限制.我听说它不能在 OS X 上运行.这是正确的吗?
EDIT 3: Also what are the limitations of multiprocessing. I've heard that it doesn't work on OS X. Is this correct?
推荐答案
- 将每次迭代的数据包装成一个元组.
- 列出这些元组的
data
- 编写函数
f
处理一个元组并返回一个结果 - 创建
p = multiprocessing.Pool()
对象. - 调用
results = p.map(f, data)
- Wrap the data for each iteration up into a tuple.
- Make a list
data
of those tuples - Write a function
f
to process one tuple and return one result - Create
p = multiprocessing.Pool()
object. - Call
results = p.map(f, data)
这将运行尽可能多的 f
实例,因为您的机器在不同进程中拥有内核.
This will run as many instances of f
as your machine has cores in separate processes.
Edit1:示例:
from multiprocessing import Pool
data = [('bla', 1, 3, 7), ('spam', 12, 4, 8), ('eggs', 17, 1, 3)]
def f(t):
name, a, b, c = t
return (name, a + b + c)
p = Pool()
results = p.map(f, data)
print results
多处理应该可以在 OSX 等类 UNIX 平台上正常工作.只有缺少 os.fork
的平台(主要是 MS Windows)需要特别注意.但即使在那里它仍然有效.请参阅多处理文档.
Multiprocessing should work fine on UNIX-like platforms such as OSX. Only platforms that lack os.fork
(mainly MS Windows) need special attention. But even there it still works. See the multiprocessing documentation.
这篇关于具有单个函数的 Python 多处理的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!