Python:在使用多处理池时使用队列写入单个文件

Python: Writing to a single file with queue while using multiprocessing Pool(Python:在使用多处理池时使用队列写入单个文件)
本文介绍了Python:在使用多处理池时使用队列写入单个文件的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我有数十万个文本文件,我想以各种方式进行解析.我想将输出保存到单个文件而不会出现同步问题.我一直在使用多处理池来执行此操作以节省时间,但我不知道如何组合池和队列.

I have hundreds of thousands of text files that I want to parse in various ways. I want to save the output to a single file without synchronization problems. I have been using multiprocessing pool to do this to save time, but I can't figure out how to combine Pool and Queue.

以下代码将保存文件名以及文件中连续x"的最大数量.但是,我希望所有进程都将结果保存到同一个文件中,而不是像我的示例中那样保存到不同的文件中.对此的任何帮助将不胜感激.

The following code will save the infile name as well as the maximum number of consecutive "x"s in the file. However, I want all processes to save results to the same file, and not to different files as in my example. Any help on this would be greatly appreciated.

import multiprocessing

with open('infilenamess.txt') as f:
    filenames = f.read().splitlines()

def mp_worker(filename):
 with open(filename, 'r') as f:
      text=f.read()
      m=re.findall("x+", text)
      count=len(max(m, key=len))
      outfile=open(filename+'_results.txt', 'a')
      outfile.write(str(filename)+'|'+str(count)+'
')
      outfile.close()

def mp_handler():
    p = multiprocessing.Pool(32)
    p.map(mp_worker, filenames)

if __name__ == '__main__':
    mp_handler()

推荐答案

多处理池为您实现了一个队列.只需使用将工作人员返回值返回给调用者的池方法.imap 运行良好:

Multiprocessing pools implement a queue for you. Just use a pool method that returns the worker return value to the caller. imap works well:

import multiprocessing 
import re

def mp_worker(filename):
    with open(filename) as f:
        text = f.read()
    m = re.findall("x+", text)
    count = len(max(m, key=len))
    return filename, count

def mp_handler():
    p = multiprocessing.Pool(32)
    with open('infilenamess.txt') as f:
        filenames = [line for line in (l.strip() for l in f) if line]
    with open('results.txt', 'w') as f:
        for result in p.imap(mp_worker, filenames):
            # (filename, count) tuples from worker
            f.write('%s: %d
' % result)

if __name__=='__main__':
    mp_handler()

这篇关于Python:在使用多处理池时使用队列写入单个文件的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

build conda package from local python package(从本地 python 包构建 conda 包)
How can I see all packages that depend on a certain package with PIP?(如何使用 PIP 查看依赖于某个包的所有包?)
How to organize multiple python files into a single module without it behaving like a package?(如何将多个 python 文件组织到一个模块中而不像一个包一样?)
Check if requirements are up to date(检查要求是否是最新的)
How to upload new versions of project to PyPI with twine?(如何使用 twine 将新版本的项目上传到 PyPI?)
Why #egg=foo when pip-installing from git repo(为什么从 git repo 进行 pip 安装时 #egg=foo)