python multiprocessing vs threading for cpu bound work on wi

python multiprocessing vs threading for cpu bound work on windows and linux(python multiprocessing vs threading for cpu bound work on windows and linux)
本文介绍了python multiprocessing vs threading for cpu bound work on windows and linux的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

所以我敲了一些测试代码,看看多处理模块在 cpu 绑定工作上与线程相比如何扩展.在 linux 上,我得到了预期的性能提升:

So I knocked up some test code to see how the multiprocessing module would scale on cpu bound work compared to threading. On linux I get the performance increase that I'd expect:

linux (dual quad core xeon):
serialrun took 1192.319 ms
parallelrun took 346.727 ms
threadedrun took 2108.172 ms

我的双核 macbook pro 显示相同的行为:

My dual core macbook pro shows the same behavior:

osx (dual core macbook pro)
serialrun took 2026.995 ms
parallelrun took 1288.723 ms
threadedrun took 5314.822 ms

然后我在一台windows机器上试了一下,得到了一些非常不同的结果.

I then went and tried it on a windows machine and got some very different results.

windows (i7 920):
serialrun took 1043.000 ms
parallelrun took 3237.000 ms
threadedrun took 2343.000 ms

为什么,为什么,Windows 上的多处理方法这么慢?

Why oh why, is the multiprocessing approach so much slower on windows?

这是测试代码:

#!/usr/bin/env python

import multiprocessing
import threading
import time

def print_timing(func):
    def wrapper(*arg):
        t1 = time.time()
        res = func(*arg)
        t2 = time.time()
        print '%s took %0.3f ms' % (func.func_name, (t2-t1)*1000.0)
        return res
    return wrapper


def counter():
    for i in xrange(1000000):
        pass

@print_timing
def serialrun(x):
    for i in xrange(x):
        counter()

@print_timing
def parallelrun(x):
    proclist = []
    for i in xrange(x):
        p = multiprocessing.Process(target=counter)
        proclist.append(p)
        p.start()

    for i in proclist:
        i.join()

@print_timing
def threadedrun(x):
    threadlist = []
    for i in xrange(x):
        t = threading.Thread(target=counter)
        threadlist.append(t)
        t.start()

    for i in threadlist:
        i.join()

def main():
    serialrun(50)
    parallelrun(50)
    threadedrun(50)

if __name__ == '__main__':
    main()

推荐答案

进程在 UNIX 变体下更加轻量级.Windows 进程很繁重,需要更多时间才能启动.线程是在 Windows 上进行多处理的推荐方式.

Processes are much more lightweight under UNIX variants. Windows processes are heavy and take much more time to start up. Threads are the recommended way of doing multiprocessing on windows.

这篇关于python multiprocessing vs threading for cpu bound work on windows and linux的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

build conda package from local python package(从本地 python 包构建 conda 包)
How can I see all packages that depend on a certain package with PIP?(如何使用 PIP 查看依赖于某个包的所有包?)
How to organize multiple python files into a single module without it behaving like a package?(如何将多个 python 文件组织到一个模块中而不像一个包一样?)
Check if requirements are up to date(检查要求是否是最新的)
How to upload new versions of project to PyPI with twine?(如何使用 twine 将新版本的项目上传到 PyPI?)
Why #egg=foo when pip-installing from git repo(为什么从 git repo 进行 pip 安装时 #egg=foo)