1. <small id='0Hz82'></small><noframes id='0Hz82'>

    1. <legend id='0Hz82'><style id='0Hz82'><dir id='0Hz82'><q id='0Hz82'></q></dir></style></legend>

      <i id='0Hz82'><tr id='0Hz82'><dt id='0Hz82'><q id='0Hz82'><span id='0Hz82'><b id='0Hz82'><form id='0Hz82'><ins id='0Hz82'></ins><ul id='0Hz82'></ul><sub id='0Hz82'></sub></form><legend id='0Hz82'></legend><bdo id='0Hz82'><pre id='0Hz82'><center id='0Hz82'></center></pre></bdo></b><th id='0Hz82'></th></span></q></dt></tr></i><div id='0Hz82'><tfoot id='0Hz82'></tfoot><dl id='0Hz82'><fieldset id='0Hz82'></fieldset></dl></div>
      • <bdo id='0Hz82'></bdo><ul id='0Hz82'></ul>

      <tfoot id='0Hz82'></tfoot>

      如何在给定条件下生成所有可能的组合以提高效率?

      How to generate all possible combinations with a given condition to make it more efficient?(如何在给定条件下生成所有可能的组合以提高效率?)
      <legend id='fBi4A'><style id='fBi4A'><dir id='fBi4A'><q id='fBi4A'></q></dir></style></legend>

            • <bdo id='fBi4A'></bdo><ul id='fBi4A'></ul>

                <tbody id='fBi4A'></tbody>
              <tfoot id='fBi4A'></tfoot>

              <small id='fBi4A'></small><noframes id='fBi4A'>

            • <i id='fBi4A'><tr id='fBi4A'><dt id='fBi4A'><q id='fBi4A'><span id='fBi4A'><b id='fBi4A'><form id='fBi4A'><ins id='fBi4A'></ins><ul id='fBi4A'></ul><sub id='fBi4A'></sub></form><legend id='fBi4A'></legend><bdo id='fBi4A'><pre id='fBi4A'><center id='fBi4A'></center></pre></bdo></b><th id='fBi4A'></th></span></q></dt></tr></i><div id='fBi4A'><tfoot id='fBi4A'></tfoot><dl id='fBi4A'><fieldset id='fBi4A'></fieldset></dl></div>
              • 本文介绍了如何在给定条件下生成所有可能的组合以提高效率?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                问题描述

                (Python) 我想从包含 150 个数字的排序列表中生成长度为 9 的所有可能组合.但是,这不是很有效,所以我想要一个条件,即每个选定数字之间的差异为 150 或更小,以便仅生成组合,以便以后使用.如何在 Python 中实现这一点?输入列表已排序,我也需要对输出进行排序.

                (Python) I would like to generate all possible combinations with length 9 out of a sorted list list with 150 numbers. However, that's not very efficient, so I want to have a condition where the difference between each of the selected numbers is 150 or less in order to only generate combinations, that I can use later on. How can I achieve this in Python? The input list is sorted and I need the output to be sorted as well.

                我已经尝试过 itertools 中的组合功能,但正如我已经提到的那样,它效率不高,并且会产生超过十亿种可能的组合.

                I already tried the combinations function from itertools, but as I already mentioned, that's not efficient and would produce more than a billion possible combinations.

                itertools.combinations(list, 9)
                

                提前致谢#

                我已经找到了这个解决方案,非常好.但是输出没有排序,这是我的问题.导入迭代工具随机导入

                I already found this solution, which was very good. However the output wasn't sorted which was my problem. import itertools import random

                def combs(nums):
                    result = set()
                    for lower in nums:
                        options = [n for n in nums if lower <= n <= lower + 150]
                        result.update(itertools.combinations(options, 9))
                    return result
                
                print(combs([random.randrange(0, 5000) for _ in range(150)]))
                

                推荐答案

                这里是:

                from itertools import combinations, islice, takewhile
                
                def mad_combinations(data, comb_lenth, diff, create_comb=tuple):
                    assert comb_lenth >= 2
                    sorted_nums = sorted(frozenset(data))
                    stop_index = len(sorted_nums) # or use None - what is faster?
                    combination = [None]*comb_lenth # common memory
                
                    def last_combinator(start_index, right_max_number):
                        """Last combination place loop"""
                        return takewhile(right_max_number.__ge__, islice(sorted_nums, start_index, stop_index))
                        # In other words:
                        # for x in islice(sorted_nums, start_index, stop_index):
                        #     if x <= right_max_number:
                        #         yield x
                        #     else: return
                
                    def _create_combinator(next_place_combinator, current_combination_place):
                        # this namespace should store variables above
                        def combinator(start_index, right_max_number):
                            """Main loop"""
                            for i, combination[current_combination_place] in 
                                enumerate(
                                    takewhile(
                                        right_max_number.__ge__,
                                        islice(sorted_nums, start_index, stop_index)),
                                    start_index + 1):
                                yield from ( # it yields last combination place number
                                    next_place_combinator(i, combination[current_combination_place] + diff))
                
                        return combinator
                
                    for combination_place in range(comb_lenth-2, 0, -1): # create chain of loops
                        last_combinator = _create_combinator(last_combinator, combination_place)
                
                    last_index = comb_lenth - 1
                    # First combination place loop:
                    for j, combination[0] in enumerate(sorted_nums, 1):
                        for combination[last_index] in last_combinator(j, combination[0] + diff):
                            yield create_comb(combination) # don't miss to create a copy!!!
                

                上面的函数大致相当于:

                The function above is roughly equivalent to:

                def example_of_comb_length_3(data, diff):
                    sorted_nums = sorted(frozenset(data))
                    for i1, n1 in enumerate(sorted_nums, 1):
                        for i2, n2 in enumerate(sorted_nums[i1:], i1 + 1):
                            if n2 - n1 > diff:break
                            for n3 in sorted_nums[i2:]:
                                if n3 - n2 > diff:break
                                yield (n1, n2, n3)
                

                使用过滤器的版本:

                def insane_combinations(data, comb_lenth, diff):
                    assert comb_lenth >= 2
                    for comb in combinations(sorted(frozenset(data)), comb_lenth):
                        for left, right in zip(comb, islice(comb, 1, comb_lenth)):
                            if right - left > diff:
                                break
                        else:
                            yield comb
                
                
                def crazy_combinations(data, comb_lenth, diff):
                    assert comb_lenth >= 2
                    last_index = comb_lenth - 1
                    last_index_m1 = last_index - 1
                    last_rule = (lambda comb: comb[last_index] - comb[last_index_m1] <= diff)
                    _create_rule = (lambda next_rule, left, right:
                        (lambda comb: (comb[right] - comb[left] <= diff) and next_rule(comb)))
                    for combination_place in range(last_index_m1, 0, -1): 
                        last_rule = _create_rule(last_rule, combination_place - 1, combination_place)
                    return filter(last_rule, combinations(sorted(frozenset(data)), comb_lenth))
                

                测试:

                def test(fetch, expected, comb_length, diff):
                    fetch = tuple(fetch)
                    assert list(insane_combinations(fetch, comb_length, diff)) == 
                           list(crazy_combinations(fetch, comb_length, diff)) == 
                           list(mad_combinations(fetch, comb_length, diff)) == list(expected)
                
                if __name__ == '__main__':
                    test([1,2,3,4,5,6],
                         comb_length=3, diff=2,
                         expected=[
                            (1, 2, 3), (1, 2, 4), (1, 3, 4), (1, 3, 5), (2, 3, 4), (2, 3, 5), (2, 4, 5),
                            (2, 4, 6), (3, 4, 5), (3, 4, 6), (3, 5, 6), (4, 5, 6)])
                
                    test([1, 2, 3, 8, 9, 10, 11, 12, 13],
                         comb_length=3, diff=3,
                         expected=[
                             (1, 2, 3), (8, 9, 10), (8, 9, 11), (8, 9, 12), (8, 10, 11), (8, 10, 12),
                             (8, 10, 13), (8, 11, 12), (8, 11, 13), (9, 10, 11), (9, 10, 12), (9, 10, 13),
                             (9, 11, 12), (9, 11, 13), (9, 12, 13), (10, 11, 12), (10, 11, 13), (10, 12, 13),
                             (11, 12, 13)])
                

                我并没有太在意边缘情况!而且我只测试了这 2 次提取! 如果您发现我的回答有帮助,请务必测试所有可能的选项并写下发现的错误(我认为很多错误).要检查您的具体获取,请使用 mad_combinations(your_fetch, 9, 150).

                I did not bother much with edge cases!! And I've tested only these 2 fetches! If you will find my answer helpful, be sure to test all possible options and write about bugs found (many bugs, I think). To check your concrete fetch use mad_combinations(your_fetch, 9, 150).

                这篇关于如何在给定条件下生成所有可能的组合以提高效率?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                相关文档推荐

                Initialize Multiple Numpy Arrays (Multiple Assignment) - Like MATLAB deal()(初始化多个 Numpy 数组(多重赋值) - 像 MATLAB deal())
                How to extend Python class init(如何扩展 Python 类初始化)
                What#39;s the difference between dict() and {}?(dict() 和 {} 有什么区别?)
                What is a wrapper_descriptor, and why is Foo.__init__() one in this case?(什么是 wrapper_descriptor,为什么 Foo.__init__() 在这种情况下是其中之一?)
                Initialize list with same bool value(使用相同的布尔值初始化列表)
                setattr with kwargs, pythonic or not?(setattr 与 kwargs,pythonic 与否?)
                <tfoot id='DcCZA'></tfoot>
                <legend id='DcCZA'><style id='DcCZA'><dir id='DcCZA'><q id='DcCZA'></q></dir></style></legend>
                  <i id='DcCZA'><tr id='DcCZA'><dt id='DcCZA'><q id='DcCZA'><span id='DcCZA'><b id='DcCZA'><form id='DcCZA'><ins id='DcCZA'></ins><ul id='DcCZA'></ul><sub id='DcCZA'></sub></form><legend id='DcCZA'></legend><bdo id='DcCZA'><pre id='DcCZA'><center id='DcCZA'></center></pre></bdo></b><th id='DcCZA'></th></span></q></dt></tr></i><div id='DcCZA'><tfoot id='DcCZA'></tfoot><dl id='DcCZA'><fieldset id='DcCZA'></fieldset></dl></div>
                      <tbody id='DcCZA'></tbody>
                    • <bdo id='DcCZA'></bdo><ul id='DcCZA'></ul>
                      • <small id='DcCZA'></small><noframes id='DcCZA'>