<bdo id='A012W'></bdo><ul id='A012W'></ul>

    <i id='A012W'><tr id='A012W'><dt id='A012W'><q id='A012W'><span id='A012W'><b id='A012W'><form id='A012W'><ins id='A012W'></ins><ul id='A012W'></ul><sub id='A012W'></sub></form><legend id='A012W'></legend><bdo id='A012W'><pre id='A012W'><center id='A012W'></center></pre></bdo></b><th id='A012W'></th></span></q></dt></tr></i><div id='A012W'><tfoot id='A012W'></tfoot><dl id='A012W'><fieldset id='A012W'></fieldset></dl></div>
  1. <tfoot id='A012W'></tfoot>

  2. <small id='A012W'></small><noframes id='A012W'>

      <legend id='A012W'><style id='A012W'><dir id='A012W'><q id='A012W'></q></dir></style></legend>

      使用 OpenCv python 库从内存中读取 base 64 编码图像

      Read a base 64 encoded image from memory using OpenCv python library(使用 OpenCv python 库从内存中读取 base 64 编码图像)

        <small id='fd5DV'></small><noframes id='fd5DV'>

        • <bdo id='fd5DV'></bdo><ul id='fd5DV'></ul>

                  <tbody id='fd5DV'></tbody>

                <legend id='fd5DV'><style id='fd5DV'><dir id='fd5DV'><q id='fd5DV'></q></dir></style></legend>
                <i id='fd5DV'><tr id='fd5DV'><dt id='fd5DV'><q id='fd5DV'><span id='fd5DV'><b id='fd5DV'><form id='fd5DV'><ins id='fd5DV'></ins><ul id='fd5DV'></ul><sub id='fd5DV'></sub></form><legend id='fd5DV'></legend><bdo id='fd5DV'><pre id='fd5DV'><center id='fd5DV'></center></pre></bdo></b><th id='fd5DV'></th></span></q></dt></tr></i><div id='fd5DV'><tfoot id='fd5DV'></tfoot><dl id='fd5DV'><fieldset id='fd5DV'></fieldset></dl></div>
                <tfoot id='fd5DV'></tfoot>
                本文介绍了使用 OpenCv python 库从内存中读取 base 64 编码图像的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                问题描述

                我正在开发一个应用程序,该应用程序可以从网络摄像头流中进行一些面部识别.我得到了画布的 base64 编码数据 uri,并想用它来做这样的事情:

                cv2.imshow('image',img)

                数据 URI 如下所示:

                 <代码>数据:图像/GIF; BASE64,R0lGODlhEAAQAMQAAORHHOVSKudfOulrSOp3WOyDZu6QdvCchPGolfO0o/XBS/fNwfjZ0frl3/zy7////wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH5BAkAABAALAAAAAAQABAAAAVVICSOZGlCQAosJ6mu7fiyZeKqNKToQGDsM8hBADgUXoGAiqhSvp5QAnQKGIgUhwFUYLCVDFCrKUE1lBavAViFIDlTImbKC5Gm2hB0SlBCBMQiB0UjIQA7

                所以,为了清楚起见,我已经展示了图像的样子,因此 base64 字符串不会被破坏.

                <预类= 片段码-HTML语言HTML的prettyprint-越权"> <代码>< IMG SRC = 数据:图像/GIF; BASE64,R0lGODlhEAAQAMQAAORHHOVSKudfOulrSOp3WOyDZu6QdvCchPGolfO0o/XBS/fNwfjZ0frl3/zy7////wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH5BAkAABAALAAAAAAQABAAAAVVICSOZGlCQAosJ6mu7fiyZeKqNKToQGDsM8hBADgUXoGAiqhSvp5QAnQKGIgUhwFUYLCVDFCrKUE1lBavAViFIDlTImbKC5Gm2hB0SlBCBMQiB0UjIQA7" >

                官方文档说,imread 接受文件路径作为参数.从 this SO 回答,如果我这样做:

                 导入 base64imgdata = base64.b64decode(imgstring) #我在下面的参考资料中使用 imgdata 作为这个变量本身文件名 = 'some_image.jpg'使用 open(filename, 'wb') 作为 f:f.write(imgdata)

                上面的代码片段可以正常工作,并且图像文件可以正确生成.但是,考虑到我会为流的每一帧都这样做,我认为这么多文件 IO 操作是不可行的.我希望能够直接创建 img 对象将图像读入内存.

                我尝试了两种似乎对某些人有效的解决方案.

                1. 使用 PIL 参考:

                  pilImage = Image.open(StringIO(imgdata))npImage = np.array(pilImage)matImage = cv.fromarray(npImage)

                  我得到 cv 未定义,因为我安装了 openCV3,它可以作为 cv2 模块使用.我试过 img = cv2.imdecode(npImage,0),这什么也没返回.

                2. 从解码的字符串中获取字节并将其转换为一个 numpy 数组

                  file_bytes = numpy.asarray(bytearray(imgdata), dtype=numpy.uint8)img = cv2.imdecode(file_bytes, 0) #这里也没有返回

                文档并没有真正提到 imdecode 函数返回什么.但是,根据我遇到的错误,我猜它期望 numpy arrayscalar 作为第一个参数.我如何在内存中处理该图像,以便我可以执行 cv2.imshow('image',img) 以及之后的各种很酷的东西.

                我希望我能说清楚.

                解决方案

                你可以像这样同时使用cv2和pillow:

                导入base64从 PIL 导入图像导入简历2从 StringIO 导入 StringIO将 numpy 导入为 npdef readb64(base64_string):sbuf = StringIO()sbuf.write(base64.b64decode(base64_string))pimg = Image.open(sbuf)返回 cv2.cvtColor(np.array(pimg), cv2.COLOR_RGB2BGR)cvimg = readb64( 'R0lGODlhEAAQAMQAAORHHOVSKudfOulrSOp3WOyDZu6QdvCchPGolfO0o/XBS/fNwfjZ0frl3/zy7////wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH5BAkAABAALAAAAAAQABAAAAVVICSOZGlCQAosJ6mu7fiyZeKqNKToQGDsM8hBADgUXoGAiqhSvp5QAnQKGIgUhwFUYLCVDFCrKUE1lBavAViFIDlTImbKC5Gm2hB0SlBCBMQiB0UjIQA7')cv2.imshow(cvimg)

                I'm working on an app that to do some facial recognition from a webcam stream. I get base64 encoded data uri's of the canvas and want to use it to do something like this:

                cv2.imshow('image',img)
                

                The data URI looks something like this:

                 
                

                So, for clarity I've shown what the image looks like so the base64 string is not broken.

                <img src="">

                The official doc says, that imread accepts a file path as the argument. From this SO answer, if I do something like:

                 import base64
                 imgdata = base64.b64decode(imgstring) #I use imgdata as this variable itself in references below
                 filename = 'some_image.jpg'
                 with open(filename, 'wb') as f:
                    f.write(imgdata)
                

                The above code snippet works and the image file gets generated properly. However I don't think so many File IO operations are feasible considering I'd be doing this for every frame of the stream. I want to be able to read the image into the memory directly creating the img object.

                I have tried two solutions that seem to be working for some people.

                1. Using PIL reference:

                  pilImage = Image.open(StringIO(imgdata))
                  npImage = np.array(pilImage)
                  matImage = cv.fromarray(npImage)
                  

                  I get cv not defined as I have openCV3 installed which is available to me as cv2 module. I tried img = cv2.imdecode(npImage,0), this returns nothing.

                2. Getting the bytes from decoded string and converting it into an numpy array of sorts

                  file_bytes = numpy.asarray(bytearray(imgdata), dtype=numpy.uint8)
                  img = cv2.imdecode(file_bytes, 0) #Here as well I get returned nothing
                  

                The documentation doesn't really mention what the imdecode function returns. However, from the errors that I encountered, I guess it is expecting a numpy array or a scalar as the first argument. How do I get a handle on that image in memory so that I can do cv2.imshow('image',img) and all kinds of cool stuff thereafter.

                I hope I was able to make myself clear.

                解决方案

                You can just use both cv2 and pillow like this:

                import base64
                from PIL import Image
                import cv2
                from StringIO import StringIO
                import numpy as np
                
                def readb64(base64_string):
                    sbuf = StringIO()
                    sbuf.write(base64.b64decode(base64_string))
                    pimg = Image.open(sbuf)
                    return cv2.cvtColor(np.array(pimg), cv2.COLOR_RGB2BGR)
                
                cvimg = readb64('R0lGODlhEAAQAMQAAORHHOVSKudfOulrSOp3WOyDZu6QdvCchPGolfO0o/XBs/fNwfjZ0frl3/zy7////wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH5BAkAABAALAAAAAAQABAAAAVVICSOZGlCQAosJ6mu7fiyZeKqNKToQGDsM8hBADgUXoGAiqhSvp5QAnQKGIgUhwFUYLCVDFCrKUE1lBavAViFIDlTImbKC5Gm2hB0SlBCBMQiB0UjIQA7')
                cv2.imshow(cvimg)
                

                这篇关于使用 OpenCv python 库从内存中读取 base 64 编码图像的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                相关文档推荐

                Initialize Multiple Numpy Arrays (Multiple Assignment) - Like MATLAB deal()(初始化多个 Numpy 数组(多重赋值) - 像 MATLAB deal())
                How to extend Python class init(如何扩展 Python 类初始化)
                What#39;s the difference between dict() and {}?(dict() 和 {} 有什么区别?)
                What is a wrapper_descriptor, and why is Foo.__init__() one in this case?(什么是 wrapper_descriptor,为什么 Foo.__init__() 在这种情况下是其中之一?)
                Initialize list with same bool value(使用相同的布尔值初始化列表)
                setattr with kwargs, pythonic or not?(setattr 与 kwargs,pythonic 与否?)
                <tfoot id='LpbNg'></tfoot>

                    <tbody id='LpbNg'></tbody>
                  1. <i id='LpbNg'><tr id='LpbNg'><dt id='LpbNg'><q id='LpbNg'><span id='LpbNg'><b id='LpbNg'><form id='LpbNg'><ins id='LpbNg'></ins><ul id='LpbNg'></ul><sub id='LpbNg'></sub></form><legend id='LpbNg'></legend><bdo id='LpbNg'><pre id='LpbNg'><center id='LpbNg'></center></pre></bdo></b><th id='LpbNg'></th></span></q></dt></tr></i><div id='LpbNg'><tfoot id='LpbNg'></tfoot><dl id='LpbNg'><fieldset id='LpbNg'></fieldset></dl></div>
                    <legend id='LpbNg'><style id='LpbNg'><dir id='LpbNg'><q id='LpbNg'></q></dir></style></legend>

                    <small id='LpbNg'></small><noframes id='LpbNg'>

                        • <bdo id='LpbNg'></bdo><ul id='LpbNg'></ul>