<bdo id='TOaSx'></bdo><ul id='TOaSx'></ul>
        <tfoot id='TOaSx'></tfoot>

      1. <i id='TOaSx'><tr id='TOaSx'><dt id='TOaSx'><q id='TOaSx'><span id='TOaSx'><b id='TOaSx'><form id='TOaSx'><ins id='TOaSx'></ins><ul id='TOaSx'></ul><sub id='TOaSx'></sub></form><legend id='TOaSx'></legend><bdo id='TOaSx'><pre id='TOaSx'><center id='TOaSx'></center></pre></bdo></b><th id='TOaSx'></th></span></q></dt></tr></i><div id='TOaSx'><tfoot id='TOaSx'></tfoot><dl id='TOaSx'><fieldset id='TOaSx'></fieldset></dl></div>

        <small id='TOaSx'></small><noframes id='TOaSx'>

      2. <legend id='TOaSx'><style id='TOaSx'><dir id='TOaSx'><q id='TOaSx'></q></dir></style></legend>

        使用 MongoDB 聚合框架计算一阶导数

        Compute first order derivative with MongoDB aggregation framework(使用 MongoDB 聚合框架计算一阶导数)
      3. <tfoot id='02Hyw'></tfoot>
      4. <i id='02Hyw'><tr id='02Hyw'><dt id='02Hyw'><q id='02Hyw'><span id='02Hyw'><b id='02Hyw'><form id='02Hyw'><ins id='02Hyw'></ins><ul id='02Hyw'></ul><sub id='02Hyw'></sub></form><legend id='02Hyw'></legend><bdo id='02Hyw'><pre id='02Hyw'><center id='02Hyw'></center></pre></bdo></b><th id='02Hyw'></th></span></q></dt></tr></i><div id='02Hyw'><tfoot id='02Hyw'></tfoot><dl id='02Hyw'><fieldset id='02Hyw'></fieldset></dl></div>
        <legend id='02Hyw'><style id='02Hyw'><dir id='02Hyw'><q id='02Hyw'></q></dir></style></legend>

              <bdo id='02Hyw'></bdo><ul id='02Hyw'></ul>

              <small id='02Hyw'></small><noframes id='02Hyw'>

                <tbody id='02Hyw'></tbody>

                  本文介绍了使用 MongoDB 聚合框架计算一阶导数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  是否可以使用聚合框架计算一阶导数?

                  Is it possible to calculate a first order derivative using the aggregate framework?

                  例如,我有数据:

                  {time_series : [10,20,40,70,110]}
                  

                  我正在尝试获得如下输出:

                  I'm trying to obtain an output like:

                  {derivative : [10,20,30,40]}
                  

                  推荐答案

                  db.collection.aggregate(
                      [
                        {
                          "$addFields": {
                            "indexes": {
                              "$range": [
                                0,
                                {
                                  "$size": "$time_series"
                                }
                              ]
                            },
                            "reversedSeries": {
                              "$reverseArray": "$time_series"
                            }
                          }
                        },
                        {
                          "$project": {
                            "derivatives": {
                              "$reverseArray": {
                                "$slice": [
                                  {
                                    "$map": {
                                      "input": {
                                        "$zip": {
                                          "inputs": [
                                            "$reversedSeries",
                                            "$indexes"
                                          ]
                                        }
                                      },
                                      "in": {
                                        "$subtract": [
                                          {
                                            "$arrayElemAt": [
                                              "$$this",
                                              0
                                            ]
                                          },
                                          {
                                            "$arrayElemAt": [
                                              "$reversedSeries",
                                              {
                                                "$add": [
                                                  {
                                                    "$arrayElemAt": [
                                                      "$$this",
                                                      1
                                                    ]
                                                  },
                                                  1
                                                ]
                                              }
                                            ]
                                          }
                                        ]
                                      }
                                    }
                                  },
                                  {
                                    "$subtract": [
                                      {
                                        "$size": "$time_series"
                                      },
                                      1
                                    ]
                                  }
                                ]
                              }
                            },
                            "time_series": 1
                          }
                        }
                      ]
                  )
                  

                  我们可以在 3.4+ 版本中使用上述管道来执行此操作.在管道中,我们使用 $addFields 流水线阶段.运算符添加time_series"的元素索引的数组来做文档,我们还反转了时间序列数组并将其添加到文档中分别使用 $range$reverseArray 运算符

                  We can use the pipeline above in version 3.4+ to do this. In the pipeline, we use the $addFields pipeline stage. operator to add the array of the "time_series"'s elements index to do document, we also reversed the time series array and add it to the document using respectively the $range and $reverseArray operators

                  我们在这里反转了数组,因为数组中 p 位置的元素总是大于 p+1 位置的元素,这意味着 [p] - [p+1] <0 并且我们不想使用 $multiply 这里.(请参阅 3.2 版的管道)

                  We reversed the array here because the element at position p in the array is always greater than the element at position p+1 which means that [p] - [p+1] < 0 and we do not want to use the $multiply here.(see pipeline for version 3.2)

                  接下来我们用索引数组$zipped 时间序列数据并应用 $map 运算符将 rel="nofollow noreferrer">substract 表达式添加到结果数组.

                  Next we $zipped the time series data with the indexes array and applied a substract expression to the resulted array using the $map operator.

                  我们然后$slice将结果从数组中丢弃null/None值并重新反转结果.

                  We then $slice the result to discard the null/None value from the array and re-reversed the result.

                  在 3.2 中我们可以使用 $unwind 运算符来展开我们的数组,并通过将文档指定为操作数而不是以 $ 为前缀的传统路径"来包含数组中每个元素的索引.

                  In 3.2 we can use the $unwind operator to unwind our array and include the index of each element in the array by specifying a document as operand instead of the traditional "path" prefixed by $.

                  接下来,我们需要 $group 我们的文档并使用 $push 累加器运算符返回一个子文档数组,如下所示:

                  Next in the pipeline, we need to $group our documents and use the $push accumulator operator to return an array of sub-documents that look like this:

                  {
                      "_id" : ObjectId("57c11ddbe860bd0b5df6bc64"),
                      "time_series" : [
                          { "value" : 10, "index" : NumberLong(0) },
                          { "value" : 20, "index" : NumberLong(1) },
                          { "value" : 40, "index" : NumberLong(2) },
                          { "value" : 70, "index" : NumberLong(3) },
                          { "value" : 110, "index" : NumberLong(4) }
                      ]
                  }
                  

                  <小时>

                  终于来了 $project 舞台.在这个阶段,我们需要使用 $map 运算符将一系列表达式应用于 $group 阶段中新计算的数组中的每个元素.


                  Finally comes the $project stage. In this stage, we need to use the $map operator to apply a series of expression to each element in the the newly computed array in the $group stage.

                  这是 $map 内部发生的事情(将 $map 视为 for 循环)in 表达式:

                  Here is what is going on inside the $map (see $map as a for loop) in expression:

                  对于每个子文档,我们使用 value 字段分配给一个变量="nofollow noreferrer">$let 变量运算符.然后我们从数组中下一个元素的value"字段的值中减去它的值.

                  For each subdocument, we assign the value field to a variable using the $let variable operator. We then subtract it value from the value of the "value" field of the next element in the array.

                  由于数组中的下一个元素是当前索引处的元素加一,我们所需要的只是 $arrayElemAt 运算符和一个简单的 $addition 当前元素的索引和 1.

                  Since the next element in the array is the element at the current index plus one, all we need is the help of the $arrayElemAt operator and a simple $addition of the current element's index and 1.

                  $subtract 表达式返回一个负值,因此我们需要使用 -1"nofollow noreferrer">$multiply 运算符.

                  The $subtract expression return a negative value so we need to multiply the value by -1 using the $multiply operator.

                  我们还需要$filter 结果数组,因为它的最后一个元素是 Nonenull.原因是当当前元素是最后一个元素时,$subtract 返回None,因为下一个元素的索引等于数组的大小.

                  We also need to $filter the resulted array because it the last element is None or null. The reason is that when the current element is the last element, $subtract return None because the index of the next element equal the size of the array.

                  db.collection.aggregate([
                    {
                      "$unwind": {
                        "path": "$time_series",
                        "includeArrayIndex": "index"
                      }
                    },
                    {
                      "$group": {
                        "_id": "$_id",
                        "time_series": {
                          "$push": {
                            "value": "$time_series",
                            "index": "$index"
                          }
                        }
                      }
                    },
                    {
                      "$project": {
                        "time_series": {
                          "$filter": {
                            "input": {
                              "$map": {
                                "input": "$time_series",
                                "as": "el",
                                "in": {
                                  "$multiply": [
                                    {
                                      "$subtract": [
                                        "$$el.value",
                                        {
                                          "$let": {
                                            "vars": {
                                              "nextElement": {
                                                "$arrayElemAt": [
                                                  "$time_series",
                                                  {
                                                    "$add": [
                                                      "$$el.index",
                                                      1
                                                    ]
                                                  }
                                                ]
                                              }
                                            },
                                            "in": "$$nextElement.value"
                                          }
                                        }
                                      ]
                                    },
                                    -1
                                  ]
                                }
                              }
                            },
                            "as": "item",
                            "cond": {
                              "$gte": [
                                "$$item",
                                0
                              ]
                            }
                          }
                        }
                      }
                    }
                  ])
                  

                  <小时>

                  我认为效率较低的另一个选项是使用 map_reduce 方法.

                  >>> import pymongo
                  >>> from bson.code import Code
                  >>> client = pymongo.MongoClient()
                  >>> db = client.test
                  >>> collection = db.collection
                  >>> mapper = Code("""
                  ...               function() {
                  ...                 var derivatives = [];
                  ...                 for (var index=1; index<this.time_series.length; index++) {
                  ...                   derivatives.push(this.time_series[index] - this.time_series[index-1]);
                  ...                 }
                  ...                 emit(this._id, derivatives);
                  ...               }
                  ...               """)
                  >>> reducer = Code("""
                  ...                function(key, value) {}
                  ...                """)
                  >>> for res in collection.map_reduce(mapper, reducer, out={'inline': 1})['results']:
                  ...     print(res)  # or do something with the document.
                  ... 
                  {'value': [10.0, 20.0, 30.0, 40.0], '_id': ObjectId('57c11ddbe860bd0b5df6bc64')}
                  

                  <小时>

                  您还可以检索所有文档并使用 numpy.diff 像这样返回导数:

                  import numpy as np
                  
                  
                  for document in collection.find({}, {'time_series': 1}):
                      result = np.diff(document['time_series']) 
                  

                  这篇关于使用 MongoDB 聚合框架计算一阶导数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  Initialize Multiple Numpy Arrays (Multiple Assignment) - Like MATLAB deal()(初始化多个 Numpy 数组(多重赋值) - 像 MATLAB deal())
                  How to extend Python class init(如何扩展 Python 类初始化)
                  What#39;s the difference between dict() and {}?(dict() 和 {} 有什么区别?)
                  What is a wrapper_descriptor, and why is Foo.__init__() one in this case?(什么是 wrapper_descriptor,为什么 Foo.__init__() 在这种情况下是其中之一?)
                  Initialize list with same bool value(使用相同的布尔值初始化列表)
                  setattr with kwargs, pythonic or not?(setattr 与 kwargs,pythonic 与否?)
                  <legend id='z1Nsb'><style id='z1Nsb'><dir id='z1Nsb'><q id='z1Nsb'></q></dir></style></legend>
                1. <i id='z1Nsb'><tr id='z1Nsb'><dt id='z1Nsb'><q id='z1Nsb'><span id='z1Nsb'><b id='z1Nsb'><form id='z1Nsb'><ins id='z1Nsb'></ins><ul id='z1Nsb'></ul><sub id='z1Nsb'></sub></form><legend id='z1Nsb'></legend><bdo id='z1Nsb'><pre id='z1Nsb'><center id='z1Nsb'></center></pre></bdo></b><th id='z1Nsb'></th></span></q></dt></tr></i><div id='z1Nsb'><tfoot id='z1Nsb'></tfoot><dl id='z1Nsb'><fieldset id='z1Nsb'></fieldset></dl></div>

                2. <tfoot id='z1Nsb'></tfoot>

                  <small id='z1Nsb'></small><noframes id='z1Nsb'>

                        <bdo id='z1Nsb'></bdo><ul id='z1Nsb'></ul>
                            <tbody id='z1Nsb'></tbody>