<legend id='xowXb'><style id='xowXb'><dir id='xowXb'><q id='xowXb'></q></dir></style></legend>

      <small id='xowXb'></small><noframes id='xowXb'>

    1. <i id='xowXb'><tr id='xowXb'><dt id='xowXb'><q id='xowXb'><span id='xowXb'><b id='xowXb'><form id='xowXb'><ins id='xowXb'></ins><ul id='xowXb'></ul><sub id='xowXb'></sub></form><legend id='xowXb'></legend><bdo id='xowXb'><pre id='xowXb'><center id='xowXb'></center></pre></bdo></b><th id='xowXb'></th></span></q></dt></tr></i><div id='xowXb'><tfoot id='xowXb'></tfoot><dl id='xowXb'><fieldset id='xowXb'></fieldset></dl></div>

        <tfoot id='xowXb'></tfoot>
        • <bdo id='xowXb'></bdo><ul id='xowXb'></ul>

        错误“只能比较标记相同的系列对象"和 sort_index

        Errorquot;Can only compare identically-labeled Series objectsquot; and sort_index(错误“只能比较标记相同的系列对象和 sort_index)

          <tbody id='qwBGX'></tbody>
        <legend id='qwBGX'><style id='qwBGX'><dir id='qwBGX'><q id='qwBGX'></q></dir></style></legend>
        <i id='qwBGX'><tr id='qwBGX'><dt id='qwBGX'><q id='qwBGX'><span id='qwBGX'><b id='qwBGX'><form id='qwBGX'><ins id='qwBGX'></ins><ul id='qwBGX'></ul><sub id='qwBGX'></sub></form><legend id='qwBGX'></legend><bdo id='qwBGX'><pre id='qwBGX'><center id='qwBGX'></center></pre></bdo></b><th id='qwBGX'></th></span></q></dt></tr></i><div id='qwBGX'><tfoot id='qwBGX'></tfoot><dl id='qwBGX'><fieldset id='qwBGX'></fieldset></dl></div>

          <small id='qwBGX'></small><noframes id='qwBGX'>

            <bdo id='qwBGX'></bdo><ul id='qwBGX'></ul>

              <tfoot id='qwBGX'></tfoot>

                1. 本文介绍了错误“只能比较标记相同的系列对象"和 sort_index的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  我有两个数据框 df1 df2 具有相同的行数和列数以及变量,我正在尝试比较布尔变量 choice 在两个数据框中.然后使用 if/else 来操作数据.但是当我尝试比较布尔变量时似乎有些错误.

                  I have two dataframes df1 df2with the same numbers of rows and columns and variables, and I'm trying to compare the boolean variable choice in the two dataframes. Then use if/else to manipulate the data. But something seems wrong when I try to compare the boolean var.

                  这是我的数据框示例和代码:

                  Here are my dataframes sample and codes:

                  #df1
                  v_100     choice #boolean
                  7          True
                  0          True
                  7          False
                  2          True
                  
                  #df2
                  v_100     choice #boolean
                  1          False
                  2          True
                  74         True
                  6          True
                  
                  def lastTwoTrials_outcome():
                       df1 = df.iloc[5::6, :] #df1 and df2 are extracted from the same dataframe first
                       df2 = df.iloc[4::6, :]
                  
                       if df1['choice'] != df2['choice']:  # if "choice" is different in the two dataframes
                           df1['v_100'] = (df1['choice'] + df2['choice']) * 0.5
                  

                  这是错误:

                  if df1['choice'] != df2['choice']:
                  File "path", line 818, in wrapper
                  raise ValueError(msg)
                  ValueError: Can only compare identically-labeled Series objects
                  

                  我在这里发现了同样的错误,和一个答案建议 sort_index 首先,但我真的不明白为什么?谁能详细解释一下(如果这是正确的解决方案)?

                  I found the same error here, and an answer suggests to sort_index first, but I don't really understand why though? Can anyone explain more in detail please (if that's the correct solution)?

                  谢谢!

                  推荐答案

                  我觉得你需要 reset_index 用于相同的索引值,然后是 comapare - 创建新列最好使用 masknumpy.where:

                  I think you need reset_index for same index values and then comapare - for create new column is better use mask or numpy.where:

                  另外 + 使用 | 因为使用布尔值.

                  Also instead + use | because working with booleans.

                  df1 = df1.reset_index(drop=True)
                  df2 = df2.reset_index(drop=True)
                  df1['v_100'] = df1['choice'].mask(df1['choice'] != df2['choice'],
                                                    (df1['choice'] + df2['choice']) * 0.5)
                  
                  
                  df1['v_100'] = np.where(df1['choice'] != df2['choice'],
                                         (df1['choice'] | df2['choice']) * 0.5,
                                          df1['choice'])
                  

                  样品:

                  print (df1)
                     v_100  choice
                  5      7    True
                  6      0    True
                  7      7   False
                  8      2    True
                  
                  print (df2)
                     v_100  choice
                  4      1   False
                  5      2    True
                  6     74    True
                  7      6    True
                  

                  <小时>

                  df1 = df1.reset_index(drop=True)
                  df2 = df2.reset_index(drop=True)
                  print (df1)
                     v_100  choice
                  0      7    True
                  1      0    True
                  2      7   False
                  3      2    True
                  
                  print (df2)
                     v_100  choice
                  0      1   False
                  1      2    True
                  2     74    True
                  3      6    True
                  
                  df1['v_100'] = df1['choice'].mask(df1['choice'] != df2['choice'],
                                                    (df1['choice'] | df2['choice']) * 0.5)
                  
                  print (df1)
                     v_100  choice
                  0    0.5    True
                  1    1.0    True
                  2    0.5   False
                  3    1.0    True
                  

                  这篇关于错误“只能比较标记相同的系列对象"和 sort_index的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  Initialize Multiple Numpy Arrays (Multiple Assignment) - Like MATLAB deal()(初始化多个 Numpy 数组(多重赋值) - 像 MATLAB deal())
                  How to extend Python class init(如何扩展 Python 类初始化)
                  What#39;s the difference between dict() and {}?(dict() 和 {} 有什么区别?)
                  What is a wrapper_descriptor, and why is Foo.__init__() one in this case?(什么是 wrapper_descriptor,为什么 Foo.__init__() 在这种情况下是其中之一?)
                  Initialize list with same bool value(使用相同的布尔值初始化列表)
                  setattr with kwargs, pythonic or not?(setattr 与 kwargs,pythonic 与否?)

                          <bdo id='vrYkF'></bdo><ul id='vrYkF'></ul>

                          <small id='vrYkF'></small><noframes id='vrYkF'>

                        • <legend id='vrYkF'><style id='vrYkF'><dir id='vrYkF'><q id='vrYkF'></q></dir></style></legend>
                            <tbody id='vrYkF'></tbody>
                          <tfoot id='vrYkF'></tfoot>
                          <i id='vrYkF'><tr id='vrYkF'><dt id='vrYkF'><q id='vrYkF'><span id='vrYkF'><b id='vrYkF'><form id='vrYkF'><ins id='vrYkF'></ins><ul id='vrYkF'></ul><sub id='vrYkF'></sub></form><legend id='vrYkF'></legend><bdo id='vrYkF'><pre id='vrYkF'><center id='vrYkF'></center></pre></bdo></b><th id='vrYkF'></th></span></q></dt></tr></i><div id='vrYkF'><tfoot id='vrYkF'></tfoot><dl id='vrYkF'><fieldset id='vrYkF'></fieldset></dl></div>