问题描述
我有一个 dataset
,它有 4 个维度(目前...),我需要对其进行迭代.
I have a dataset
which has 4 dimensions (for now...) and I need to iterate over it.
要访问 dataset
中的值,我这样做:
To access a value in the dataset
, I do this:
value = dataset[i,j,k,l]
现在,我可以获得 dataset
的 shape
:
Now, I can get the shape
for the dataset
:
shape = [4,5,2,6]
shape
中的值代表维度的长度.
The values in shape
represent the length of the dimension.
在给定维数的情况下,我如何迭代数据集中的所有元素?这是一个例子:
How, given the number of dimensions, can I iterate over all the elements in my dataset? Here is an example:
for i in range(shape[0]):
for j in range(shape[1]):
for k in range(shape[2]):
for l in range(shape[3]):
print('BOOM')
value = dataset[i,j,k,l]
将来,shape
可能会发生变化.例如,shape
可能有 10 个元素,而不是当前的 4 个.
In the future, the shape
may change. So for example, shape
may have 10 elements rather than the current 4.
在 Python 3 中是否有一种简洁明了的方式来做到这一点?
Is there a nice and clean way to do this with Python 3?
推荐答案
你可以使用 itertools.product
迭代 笛卡尔积1 个值(在本例中为索引):
You could use itertools.product
to iterate over the cartesian product 1 of some values (in this case the indices):
import itertools
shape = [4,5,2,6]
for idx in itertools.product(*[range(s) for s in shape]):
value = dataset[idx]
print(idx, value)
# i would be "idx[0]", j "idx[1]" and so on...
<小时>
但是,如果它是您想要迭代的 numpy 数组,可能更容易使用 np.ndenumerate
:
However if it's a numpy array you want to iterate over, it could be easier to use np.ndenumerate
:
import numpy as np
arr = np.random.random([4,5,2,6])
for idx, value in np.ndenumerate(arr):
print(idx, value)
# i would be "idx[0]", j "idx[1]" and so on...
<小时>
1 您要求澄清 itertools.product(*[range(s) for s in shape])
的实际作用.所以我会更详细地解释它.
1 You asked for clarification what itertools.product(*[range(s) for s in shape])
actually does. So I'll explain it in more details.
例如你有这个循环:
for i in range(10):
for j in range(8):
# do whatever
这也可以用 product
写成:
for i, j in itertools.product(range(10), range(8)):
# ^^^^^^^^---- the inner for loop
# ^^^^^^^^^-------------- the outer for loop
# do whatever
这意味着 product
只是减少 independant for 循环数量的便捷方式.
That means product
is just a handy way of reducing the number of independant for-loops.
如果您想将可变数量的 for
-loops 转换为 product
,您基本上需要两个步骤:
If you want to convert a variable number of for
-loops to a product
you essentially need two steps:
# Create the "values" each for-loop iterates over
loopover = [range(s) for s in shape]
# Unpack the list using "*" operator because "product" needs them as
# different positional arguments:
prod = itertools.product(*loopover)
for idx in prod:
i_0, i_1, ..., i_n = idx # index is a tuple that can be unpacked if you know the number of values.
# The "..." has to be replaced with the variables in real code!
# do whatever
相当于:
for i_1 in range(shape[0]):
for i_2 in range(shape[1]):
... # more loops
for i_n in range(shape[n]): # n is the length of the "shape" object
# do whatever
这篇关于如何迭代这个 n 维数据集?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!