<tfoot id='RLvQe'></tfoot>

  • <legend id='RLvQe'><style id='RLvQe'><dir id='RLvQe'><q id='RLvQe'></q></dir></style></legend>

        <bdo id='RLvQe'></bdo><ul id='RLvQe'></ul>

        <i id='RLvQe'><tr id='RLvQe'><dt id='RLvQe'><q id='RLvQe'><span id='RLvQe'><b id='RLvQe'><form id='RLvQe'><ins id='RLvQe'></ins><ul id='RLvQe'></ul><sub id='RLvQe'></sub></form><legend id='RLvQe'></legend><bdo id='RLvQe'><pre id='RLvQe'><center id='RLvQe'></center></pre></bdo></b><th id='RLvQe'></th></span></q></dt></tr></i><div id='RLvQe'><tfoot id='RLvQe'></tfoot><dl id='RLvQe'><fieldset id='RLvQe'></fieldset></dl></div>
      1. <small id='RLvQe'></small><noframes id='RLvQe'>

        Pandas,来自 2 列的数据透视表,其值为其中一列的计数

        Pandas, Pivot table from 2 columns with values being a count of one of those columns(Pandas,来自 2 列的数据透视表,其值为其中一列的计数)
          <tbody id='nZHQy'></tbody>
          <i id='nZHQy'><tr id='nZHQy'><dt id='nZHQy'><q id='nZHQy'><span id='nZHQy'><b id='nZHQy'><form id='nZHQy'><ins id='nZHQy'></ins><ul id='nZHQy'></ul><sub id='nZHQy'></sub></form><legend id='nZHQy'></legend><bdo id='nZHQy'><pre id='nZHQy'><center id='nZHQy'></center></pre></bdo></b><th id='nZHQy'></th></span></q></dt></tr></i><div id='nZHQy'><tfoot id='nZHQy'></tfoot><dl id='nZHQy'><fieldset id='nZHQy'></fieldset></dl></div>
          • <small id='nZHQy'></small><noframes id='nZHQy'>

          • <legend id='nZHQy'><style id='nZHQy'><dir id='nZHQy'><q id='nZHQy'></q></dir></style></legend>

                <tfoot id='nZHQy'></tfoot>

                  <bdo id='nZHQy'></bdo><ul id='nZHQy'></ul>
                • 本文介绍了Pandas,来自 2 列的数据透视表,其值为其中一列的计数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  我有一个熊猫数据框:

                  +---------------+-------------+
                  | Test_Category | Test_Result |
                  +---------------+-------------+
                  | Cat_1         | Pass        |
                  | Cat_1         | N/A         |
                  | Cat_2         | Fail        |
                  | Cat_2         | Fail        |
                  | Cat_3         | Pass        |
                  | Cat_3         | Pass        |
                  | Cat_3         | Fail        |
                  | Cat_3         | N/A         |
                  +---------------+-------------+
                  

                  我需要这样的表:

                  +------+------+------+-----+
                  |      | Pass | Fail | N/A |
                  +------+------+------+-----+
                  | Cat1 |    1 |      |   1 |
                  | Cat2 |      |    2 |     |
                  | Cat3 |    2 |    1 |   1 |
                  +------+------+------+-----+
                  

                  我尝试使用 Pivot,但不知道如何让它计算 Test_Result 列中的出现次数并将它们作为值放入数据透视结果中.

                  I tried using a Pivot, but can't figure out how to make it count occurrences from Test_Result column and put them as values into pivot result.

                  谢谢!

                  推荐答案

                  这里是问题 NaN 值被排除,所以必须使用 fillnacrosstab:

                  Here is problem NaN values are exluded, so necessary use fillna with crosstab:

                  df1 = pd.crosstab(df['Test_Category'], df['Test_Result'].fillna('n/a'))
                  print (df1)
                  Test_Result    Fail  Pass  n/a
                  Test_Category                 
                  Cat_1             0     1    1
                  Cat_2             2     0    0
                  Cat_3             1     2    1
                  

                  或使用 GroupBy.sizeunstack 用于重塑:

                  Or use GroupBy.size with unstack for reshape:

                  df['Test_Result'] = df['Test_Result'].fillna('n/a')
                  
                  df1 = df.groupby(['Test_Category','Test_Result']).size().unstack()
                  print (df1)
                  Test_Result    Fail  Pass  n/a
                  Test_Category                 
                  Cat_1           NaN   1.0  1.0
                  Cat_2           2.0   NaN  NaN
                  Cat_3           1.0   2.0  1.0
                  

                  <小时>

                  df1 = df.groupby(['Test_Category','Test_Result']).size().unstack(fill_value=0)
                  print (df1)
                  Test_Result    Fail  Pass  n/a
                  Test_Category                 
                  Cat_1             0     1    1
                  Cat_2             2     0    0
                  Cat_3             1     2    1
                  

                  另一种解决方案 pivot_table:

                  Another solution with pivot_table:

                  df = df.pivot_table(index='Test_Category',columns='Test_Result', aggfunc='size')
                  

                  这篇关于Pandas,来自 2 列的数据透视表,其值为其中一列的计数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  Running .jl file from R or Python(从 R 或 Python 运行 .jl 文件)
                  Running Julia .jl file in python(在 python 中运行 Julia .jl 文件)
                  Using PIP in a Azure WebApp(在 Azure WebApp 中使用 PIP)
                  How to run python3.7 based flask web api on azure(如何在 azure 上运行基于 python3.7 的烧瓶 web api)
                  Azure Python Web App Internal Server Error(Azure Python Web 应用程序内部服务器错误)
                  Run python dlib library on azure app service(在 azure app 服务上运行 python dlib 库)

                  1. <i id='KuHQO'><tr id='KuHQO'><dt id='KuHQO'><q id='KuHQO'><span id='KuHQO'><b id='KuHQO'><form id='KuHQO'><ins id='KuHQO'></ins><ul id='KuHQO'></ul><sub id='KuHQO'></sub></form><legend id='KuHQO'></legend><bdo id='KuHQO'><pre id='KuHQO'><center id='KuHQO'></center></pre></bdo></b><th id='KuHQO'></th></span></q></dt></tr></i><div id='KuHQO'><tfoot id='KuHQO'></tfoot><dl id='KuHQO'><fieldset id='KuHQO'></fieldset></dl></div>
                      <tbody id='KuHQO'></tbody>

                        • <bdo id='KuHQO'></bdo><ul id='KuHQO'></ul>
                            <tfoot id='KuHQO'></tfoot>

                            <small id='KuHQO'></small><noframes id='KuHQO'>

                            <legend id='KuHQO'><style id='KuHQO'><dir id='KuHQO'><q id='KuHQO'></q></dir></style></legend>