本文介绍了如何在 pandas 数据框中对最大和最小时间戳进行分组的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!
问题描述
我想对数据集进行分组并返回最大和最小时间戳.这是我的数据
I want to group a dataset and return the maximum and minimum timestamp. Here's my data
id timestamp
1 2017-09-17 10:09:01
2 2017-10-02 01:13:15
1 2017-09-17 10:53:07
1 2017-09-17 10:52:18
2 2017-09-12 21:59:40
这是我想要的输出
id max min
1 2017-09-17 10:53:07 2017-09-17 10:09:01
2 2017-10-02 01:13:15 2017-09-12 21:59:40
这就是我所做的,代码似乎效率不高,我希望在 pandas 上有更好的方法来做到这一点
Here's what I did, the code seems not efficient, I hope theres better way to do this on pandas
data1 = df.sort_values('timestamp').drop_duplicates(['customer_id'], keep='last')
data2 = df.sort_values('timestamp').drop_duplicates(['customer_id'], keep='first')
data1['max'] = data1['timestamp']
data2['min'] = data2['timestamp']
data = data1.merge(data2, on = 'customer_id', how='left')
data = data.drop(['timestamp_x','timestamp_y'], axis=1)
熊猫似乎有这种枢轴
推荐答案
我觉得需要agg
:
df = df.groupby('id')['timestamp'].agg(['min','max']).reset_index()
print (df)
id min max
0 1 2017-09-17 10:09:01 2017-09-17 10:53:07
1 2 2017-09-12 21:59:40 2017-10-02 01:13:15
或者稍微修改一下你的解决方案(应该会更快):
Or a bit modify your solution (should be faster):
data = df.sort_values('timestamp')
data1 = data.drop_duplicates(['id'], keep='last').set_index('id')
data2 = data.drop_duplicates(['id'], keep='first').set_index('id')
df = pd.concat([data1['timestamp'], data2['timestamp']],keys=('max','min'), axis=1)
print (df)
max min
id
1 2017-09-17 10:53:07 2017-09-17 10:09:01
2 2017-10-02 01:13:15 2017-09-12 21:59:40
这篇关于如何在 pandas 数据框中对最大和最小时间戳进行分组的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!
本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!