问题描述
我需要一种方法来快速返回两个大列表之间的差异数.每个列表项的内容为 1 或 0(单个整数),每个列表中的项数始终为 307200.
I'm in need of a method to quickly return the number of differences between two large lists. The contents of each list item is either 1 or 0 (single integers), and the amount of items in each list will always be 307200.
这是我当前代码的示例:
This is a sample of my current code:
list1 = <list1> # should be a list of integers containing 1's or 0's
list2 = <list2> # same rule as above, in a slightly different order
diffCount = 0
for index, item in enumerate(list1):
if item != list2[index]:
diffCount += 1
percent = float(diffCount) / float(307200)
上述方法有效,但对于我的目的来说太慢了.我想知道是否有更快的方法来获取列表之间的差异数量,或者差异项目的百分比?
The above works but it is way too slow for my purposes. What I would like to know is if there is a quicker way to obtain the number of differences between lists, or the percentage of items that differ?
我在这个站点上查看了一些类似的线程,但它们的工作方式似乎与我想要的略有不同,并且 set() 示例似乎不适用于我的目的.:P
I have looked at a few similar threads on this site but they all seem to work slightly different from what I want, and the set() examples don't seem to work for my purposes. :P
推荐答案
如果你使用 NumPy,你至少可以获得 10 倍的加速数组而不是列表.
You can get at least another 10X speedup if you use NumPy arrays instead of lists.
import random
import time
import numpy as np
list1 = [random.choice((0,1)) for x in xrange(307200)]
list2 = [random.choice((0,1)) for x in xrange(307200)]
a1 = np.array(list1)
a2 = np.array(list2)
def foo1():
start = time.clock()
counter = 0
for i in xrange(307200):
if list1[i] != list2[i]:
counter += 1
print "%d, %f" % (counter, time.clock()-start)
def foo2():
start = time.clock()
ct = np.sum(a1!=a2)
print "%d, %f" % (ct, time.clock()-start)
foo1() #153490, 0.096215
foo2() #153490, 0.010224
这篇关于比较两个大的 1 和 1 列表的最快方法是什么?0 并返回差异计数/百分比?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!