<i id='R0M5X'><tr id='R0M5X'><dt id='R0M5X'><q id='R0M5X'><span id='R0M5X'><b id='R0M5X'><form id='R0M5X'><ins id='R0M5X'></ins><ul id='R0M5X'></ul><sub id='R0M5X'></sub></form><legend id='R0M5X'></legend><bdo id='R0M5X'><pre id='R0M5X'><center id='R0M5X'></center></pre></bdo></b><th id='R0M5X'></th></span></q></dt></tr></i><div id='R0M5X'><tfoot id='R0M5X'></tfoot><dl id='R0M5X'><fieldset id='R0M5X'></fieldset></dl></div>
    • <bdo id='R0M5X'></bdo><ul id='R0M5X'></ul>
    <tfoot id='R0M5X'></tfoot>
  • <legend id='R0M5X'><style id='R0M5X'><dir id='R0M5X'><q id='R0M5X'></q></dir></style></legend>

  • <small id='R0M5X'></small><noframes id='R0M5X'>

        如何保存 GridSearchCV 对象?

        How to save GridSearchCV object?(如何保存 GridSearchCV 对象?)
            <tbody id='OmxYg'></tbody>
            <bdo id='OmxYg'></bdo><ul id='OmxYg'></ul>
              1. <small id='OmxYg'></small><noframes id='OmxYg'>

                1. <legend id='OmxYg'><style id='OmxYg'><dir id='OmxYg'><q id='OmxYg'></q></dir></style></legend>

                  <tfoot id='OmxYg'></tfoot>

                  <i id='OmxYg'><tr id='OmxYg'><dt id='OmxYg'><q id='OmxYg'><span id='OmxYg'><b id='OmxYg'><form id='OmxYg'><ins id='OmxYg'></ins><ul id='OmxYg'></ul><sub id='OmxYg'></sub></form><legend id='OmxYg'></legend><bdo id='OmxYg'><pre id='OmxYg'><center id='OmxYg'></center></pre></bdo></b><th id='OmxYg'></th></span></q></dt></tr></i><div id='OmxYg'><tfoot id='OmxYg'></tfoot><dl id='OmxYg'><fieldset id='OmxYg'></fieldset></dl></div>

                  本文介绍了如何保存 GridSearchCV 对象?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  最近,我一直致力于在带有 Tensorflow 后端的 Keras 中应用网格搜索交叉验证 (sklearn GridSearchCV) 进行超参数调整.我的模型调整好后我正在尝试保存 GridSearchCV 对象以供以后使用,但没有成功.

                  Lately, I have been working on applying grid search cross validation (sklearn GridSearchCV) for hyper-parameter tuning in Keras with Tensorflow backend. An soon as my model is tuned I am trying to save the GridSearchCV object for later use without success.

                  超参数调优如下:

                  x_train, x_val, y_train, y_val = train_test_split(NN_input, NN_target, train_size = 0.85, random_state = 4)
                  
                  history = History() 
                  kfold = 10
                  
                  
                  regressor = KerasRegressor(build_fn = create_keras_model, epochs = 100, batch_size=1000, verbose=1)
                  
                  neurons = np.arange(10,101,10) 
                  hidden_layers = [1,2]
                  optimizer = ['adam','sgd']
                  activation = ['relu'] 
                  dropout = [0.1] 
                  
                  parameters = dict(neurons = neurons,
                                    hidden_layers = hidden_layers,
                                    optimizer = optimizer,
                                    activation = activation,
                                    dropout = dropout)
                  
                  gs = GridSearchCV(estimator = regressor,
                                    param_grid = parameters,
                                    scoring='mean_squared_error',
                                    n_jobs = 1,
                                    cv = kfold,
                                    verbose = 3,
                                    return_train_score=True))
                  
                  grid_result = gs.fit(NN_input,
                                      NN_target,
                                      callbacks=[history],
                                      verbose=1,
                                      validation_data=(x_val, y_val))
                  

                  备注:create_keras_model 函数初始化并编译一个 Keras Sequential 模型.

                  Remark: create_keras_model function initializes and compiles a Keras Sequential model.

                  执行交叉验证后,我尝试使用以下代码保存网格搜索对象 (gs):

                  After the cross validation is performed I am trying to save the grid search object (gs) with the following code:

                  from sklearn.externals import joblib
                  
                  joblib.dump(gs, 'GS_obj.pkl')
                  

                  我得到的错误如下:

                  TypeError: can't pickle _thread.RLock objects
                  

                  能否请您告诉我此错误的原因可能是什么?

                  Could you please let me know what might be the reason for this error?

                  谢谢!

                  P.S.:joblib.dump 方法适用于保存使用的 GridSearchCV 对象用于训练来自 sklearn 的 MLPRegressors.

                  P.S.: joblib.dump method works well for saving GridSearchCV objects that are used for the training MLPRegressors from sklearn.

                  推荐答案

                  使用

                  直接导入joblib

                  而不是

                  从 sklearn.externals 导入作业库

                  保存对象或结果:

                  joblib.dump(gs, 'model_file_name.pkl')

                  并使用以下方法加载您的结果:

                  and load your results using:

                  joblib.load("model_file_name.pkl")

                  这是一个简单的工作示例:

                  Here is a simple working example:

                  
                  import joblib
                  
                  #save your model or results
                  joblib.dump(gs, 'model_file_name.pkl')
                  
                  #load your model for further usage
                  joblib.load("model_file_name.pkl")
                  
                  

                  这篇关于如何保存 GridSearchCV 对象?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  What happens when you compare 2 pandas Series(当你比较 2 个 pandas 系列时会发生什么)
                  Quickly find differences between two large text files(快速查找两个大文本文件之间的差异)
                  Python - Compare 2 files and output differences(Python - 比较 2 个文件和输出差异)
                  Why do comparisions between very large float values fail in python?(为什么在 python 中非常大的浮点值之间的比较会失败?)
                  Dictionary merge by updating but not overwriting if value exists(字典通过更新合并,但如果值存在则不覆盖)
                  Find entries of one text file in another file in python(在python中的另一个文件中查找一个文本文件的条目)
                    <bdo id='JZlBI'></bdo><ul id='JZlBI'></ul>

                      <i id='JZlBI'><tr id='JZlBI'><dt id='JZlBI'><q id='JZlBI'><span id='JZlBI'><b id='JZlBI'><form id='JZlBI'><ins id='JZlBI'></ins><ul id='JZlBI'></ul><sub id='JZlBI'></sub></form><legend id='JZlBI'></legend><bdo id='JZlBI'><pre id='JZlBI'><center id='JZlBI'></center></pre></bdo></b><th id='JZlBI'></th></span></q></dt></tr></i><div id='JZlBI'><tfoot id='JZlBI'></tfoot><dl id='JZlBI'><fieldset id='JZlBI'></fieldset></dl></div>
                        <tbody id='JZlBI'></tbody>

                          <small id='JZlBI'></small><noframes id='JZlBI'>

                            <tfoot id='JZlBI'></tfoot>

                          • <legend id='JZlBI'><style id='JZlBI'><dir id='JZlBI'><q id='JZlBI'></q></dir></style></legend>