<legend id='AXKAg'><style id='AXKAg'><dir id='AXKAg'><q id='AXKAg'></q></dir></style></legend>
    <bdo id='AXKAg'></bdo><ul id='AXKAg'></ul>

        <i id='AXKAg'><tr id='AXKAg'><dt id='AXKAg'><q id='AXKAg'><span id='AXKAg'><b id='AXKAg'><form id='AXKAg'><ins id='AXKAg'></ins><ul id='AXKAg'></ul><sub id='AXKAg'></sub></form><legend id='AXKAg'></legend><bdo id='AXKAg'><pre id='AXKAg'><center id='AXKAg'></center></pre></bdo></b><th id='AXKAg'></th></span></q></dt></tr></i><div id='AXKAg'><tfoot id='AXKAg'></tfoot><dl id='AXKAg'><fieldset id='AXKAg'></fieldset></dl></div>
      1. <small id='AXKAg'></small><noframes id='AXKAg'>

        <tfoot id='AXKAg'></tfoot>
      2. 将 Pandas 数据框转换为嵌套 JSON

        Convert Pandas Dataframe to nested JSON(将 Pandas 数据框转换为嵌套 JSON)
          <bdo id='1ERsH'></bdo><ul id='1ERsH'></ul>
          • <small id='1ERsH'></small><noframes id='1ERsH'>

            <tfoot id='1ERsH'></tfoot>
              <tbody id='1ERsH'></tbody>

              <legend id='1ERsH'><style id='1ERsH'><dir id='1ERsH'><q id='1ERsH'></q></dir></style></legend>
                <i id='1ERsH'><tr id='1ERsH'><dt id='1ERsH'><q id='1ERsH'><span id='1ERsH'><b id='1ERsH'><form id='1ERsH'><ins id='1ERsH'></ins><ul id='1ERsH'></ul><sub id='1ERsH'></sub></form><legend id='1ERsH'></legend><bdo id='1ERsH'><pre id='1ERsH'><center id='1ERsH'></center></pre></bdo></b><th id='1ERsH'></th></span></q></dt></tr></i><div id='1ERsH'><tfoot id='1ERsH'></tfoot><dl id='1ERsH'><fieldset id='1ERsH'></fieldset></dl></div>

                1. 本文介绍了将 Pandas 数据框转换为嵌套 JSON的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  我是 Python 和 Pandas 的新手.我正在尝试将 Pandas Dataframe 转换为嵌套的 JSON..to_json() 函数没有给我足够的灵活性来实现我的目标.

                  I am new to Python and Pandas. I am trying to convert a Pandas Dataframe to a nested JSON. The function .to_json() doens't give me enough flexibility for my aim.

                  以下是数据框的一些数据点(以 csv 格式,逗号分隔):

                  Here are some data points of the dataframe (in csv, comma separated):

                  ,ID,Location,Country,Latitude,Longitude,timestamp,tide  
                  0,1,BREST,FRA,48.383,-4.495,1807-01-01,6905.0  
                  1,1,BREST,FRA,48.383,-4.495,1807-02-01,6931.0  
                  2,1,BREST,FRA,48.383,-4.495,1807-03-01,6896.0  
                  3,1,BREST,FRA,48.383,-4.495,1807-04-01,6953.0  
                  4,1,BREST,FRA,48.383,-4.495,1807-05-01,7043.0  
                  2508,7,CUXHAVEN 2,DEU,53.867,8.717,1843-01-01,7093.0  
                  2509,7,CUXHAVEN 2,DEU,53.867,8.717,1843-02-01,6688.0  
                  2510,7,CUXHAVEN 2,DEU,53.867,8.717,1843-03-01,6493.0  
                  2511,7,CUXHAVEN 2,DEU,53.867,8.717,1843-04-01,6723.0  
                  2512,7,CUXHAVEN 2,DEU,53.867,8.717,1843-05-01,6533.0  
                  4525,9,MAASSLUIS,NLD,51.918,4.25,1848-02-01,6880.0  
                  4526,9,MAASSLUIS,NLD,51.918,4.25,1848-03-01,6700.0  
                  4527,9,MAASSLUIS,NLD,51.918,4.25,1848-04-01,6775.0  
                  4528,9,MAASSLUIS,NLD,51.918,4.25,1848-05-01,6580.0  
                  4529,9,MAASSLUIS,NLD,51.918,4.25,1848-06-01,6685.0  
                  6540,8,WISMAR 2,DEU,53.898999999999994,11.458,1848-07-01,6957.0  
                  6541,8,WISMAR 2,DEU,53.898999999999994,11.458,1848-08-01,6944.0  
                  6542,8,WISMAR 2,DEU,53.898999999999994,11.458,1848-09-01,7084.0  
                  6543,8,WISMAR 2,DEU,53.898999999999994,11.458,1848-10-01,6898.0  
                  6544,8,WISMAR 2,DEU,53.898999999999994,11.458,1848-11-01,6859.0  
                  8538,10,SAN FRANCISCO,USA,37.806999999999995,-122.465,1854-07-01,6909.0  
                  8539,10,SAN FRANCISCO,USA,37.806999999999995,-122.465,1854-08-01,6940.0  
                  8540,10,SAN FRANCISCO,USA,37.806999999999995,-122.465,1854-09-01,6961.0  
                  8541,10,SAN FRANCISCO,USA,37.806999999999995,-122.465,1854-10-01,6952.0  
                  8542,10,SAN FRANCISCO,USA,37.806999999999995,-122.465,1854-11-01,6952.0  
                  

                  有很多重复的信息,我想要一个这样的JSON:

                  There is a lot of repetitive information and I would like to have a JSON like this:

                  [
                  {
                      "ID": 1,
                      "Location": "BREST",
                      "Latitude": 48.383,
                      "Longitude": -4.495,
                      "Country": "FRA",
                      "Tide-Data": {
                          "1807-02-01": 6931,
                          "1807-03-01": 6896,
                          "1807-04-01": 6953,
                          "1807-05-01": 7043
                      }
                  },
                  {
                      "ID": 5,
                      "Location": "HOLYHEAD",
                      "Latitude": 53.31399999999999,
                      "Longitude": -4.62,
                      "Country": "GBR",
                      "Tide-Data": {
                          "1807-02-01": 6931,
                          "1807-03-01": 6896,
                          "1807-04-01": 6953,
                          "1807-05-01": 7043
                      }
                  }
                  ]
                  

                  我怎样才能做到这一点?

                  How could I achieve this?

                  重现数据框的代码:

                  # input json
                  json_str = '[{"ID":1,"Location":"BREST","Country":"FRA","Latitude":48.383,"Longitude":-4.495,"timestamp":"1807-01-01","tide":6905},{"ID":1,"Location":"BREST","Country":"FRA","Latitude":48.383,"Longitude":-4.495,"timestamp":"1807-02-01","tide":6931},{"ID":1,"Location":"BREST","Country":"DEU","Latitude":48.383,"Longitude":-4.495,"timestamp":"1807-03-01","tide":6896},{"ID":7,"Location":"CUXHAVEN 2","Country":"DEU","Latitude":53.867,"Longitude":-8.717,"timestamp":"1843-01-01","tide":7093},{"ID":7,"Location":"CUXHAVEN 2","Country":"DEU","Latitude":53.867,"Longitude":-8.717,"timestamp":"1843-02-01","tide":6688},{"ID":7,"Location":"CUXHAVEN 2","Country":"DEU","Latitude":53.867,"Longitude":-8.717,"timestamp":"1843-03-01","tide":6493}]'
                  
                  # load json object
                  data_list = json.loads(json_str)
                  
                  # create dataframe
                  df = json_normalize(data_list, None, None)
                  

                  推荐答案

                  更新:

                  j = (df.groupby(['ID','Location','Country','Latitude','Longitude'])
                         .apply(lambda x: x[['timestamp','tide']].to_dict('records'))
                         .reset_index()
                         .rename(columns={0:'Tide-Data'})
                         .to_json(orient='records'))
                       
                  

                  结果(格式化):

                  In [103]: print(json.dumps(json.loads(j), indent=2, sort_keys=True))
                  [
                    {
                      "Country": "FRA",
                      "ID": 1,
                      "Latitude": 48.383,
                      "Location": "BREST",
                      "Longitude": -4.495,
                      "Tide-Data": [
                        {
                          "tide": 6905.0,
                          "timestamp": "1807-01-01"
                        },
                        {
                          "tide": 6931.0,
                          "timestamp": "1807-02-01"
                        },
                        {
                          "tide": 6896.0,
                          "timestamp": "1807-03-01"
                        },
                        {
                          "tide": 6953.0,
                          "timestamp": "1807-04-01"
                        },
                        {
                          "tide": 7043.0,
                          "timestamp": "1807-05-01"
                        }
                      ]
                    },
                    {
                      "Country": "DEU",
                      "ID": 7,
                      "Latitude": 53.867,
                      "Location": "CUXHAVEN 2",
                      "Longitude": 8.717,
                      "Tide-Data": [
                        {
                          "tide": 7093.0,
                          "timestamp": "1843-01-01"
                        },
                        {
                          "tide": 6688.0,
                          "timestamp": "1843-02-01"
                        },
                        {
                          "tide": 6493.0,
                          "timestamp": "1843-03-01"
                        },
                        {
                          "tide": 6723.0,
                          "timestamp": "1843-04-01"
                        },
                        {
                          "tide": 6533.0,
                          "timestamp": "1843-05-01"
                        }
                      ]
                    },
                    {
                      "Country": "DEU",
                      "ID": 8,
                      "Latitude": 53.899,
                      "Location": "WISMAR 2",
                      "Longitude": 11.458,
                      "Tide-Data": [
                        {
                          "tide": 6957.0,
                          "timestamp": "1848-07-01"
                        },
                        {
                          "tide": 6944.0,
                          "timestamp": "1848-08-01"
                        },
                        {
                          "tide": 7084.0,
                          "timestamp": "1848-09-01"
                        },
                        {
                          "tide": 6898.0,
                          "timestamp": "1848-10-01"
                        },
                        {
                          "tide": 6859.0,
                          "timestamp": "1848-11-01"
                        }
                      ]
                    },
                    {
                      "Country": "NLD",
                      "ID": 9,
                      "Latitude": 51.918,
                      "Location": "MAASSLUIS",
                      "Longitude": 4.25,
                      "Tide-Data": [
                        {
                          "tide": 6880.0,
                          "timestamp": "1848-02-01"
                        },
                        {
                          "tide": 6700.0,
                          "timestamp": "1848-03-01"
                        },
                        {
                          "tide": 6775.0,
                          "timestamp": "1848-04-01"
                        },
                        {
                          "tide": 6580.0,
                          "timestamp": "1848-05-01"
                        },
                        {
                          "tide": 6685.0,
                          "timestamp": "1848-06-01"
                        }
                      ]
                    },
                    {
                      "Country": "USA",
                      "ID": 10,
                      "Latitude": 37.807,
                      "Location": "SAN FRANCISCO",
                      "Longitude": -122.465,
                      "Tide-Data": [
                        {
                          "tide": 6909.0,
                          "timestamp": "1854-07-01"
                        },
                        {
                          "tide": 6940.0,
                          "timestamp": "1854-08-01"
                        },
                        {
                          "tide": 6961.0,
                          "timestamp": "1854-09-01"
                        },
                        {
                          "tide": 6952.0,
                          "timestamp": "1854-10-01"
                        },
                        {
                          "tide": 6952.0,
                          "timestamp": "1854-11-01"
                        }
                      ]
                    }
                  ]
                  

                  旧答案:

                  您可以使用 groupby()apply()to_json() 方法:

                  You can do it using groupby(), apply() and to_json() methods:

                  j = (df.groupby(['ID','Location','Country','Latitude','Longitude'], as_index=False)
                         .apply(lambda x: dict(zip(x.timestamp,x.tide)))
                         .reset_index()
                         .rename(columns={0:'Tide-Data'})
                         .to_json(orient='records'))
                  

                  输出:

                  In [112]: print(json.dumps(json.loads(j), indent=2, sort_keys=True))
                  [
                    {
                      "Country": "FRA",
                      "ID": 1,
                      "Latitude": 48.383,
                      "Location": "BREST",
                      "Longitude": -4.495,
                      "Tide-Data": {
                        "1807-01-01": 6905.0,
                        "1807-02-01": 6931.0,
                        "1807-03-01": 6896.0,
                        "1807-04-01": 6953.0,
                        "1807-05-01": 7043.0
                      }
                    },
                    {
                      "Country": "DEU",
                      "ID": 7,
                      "Latitude": 53.867,
                      "Location": "CUXHAVEN 2",
                      "Longitude": 8.717,
                      "Tide-Data": {
                        "1843-01-01": 7093.0,
                        "1843-02-01": 6688.0,
                        "1843-03-01": 6493.0,
                        "1843-04-01": 6723.0,
                        "1843-05-01": 6533.0
                      }
                    },
                    {
                      "Country": "DEU",
                      "ID": 8,
                      "Latitude": 53.899,
                      "Location": "WISMAR 2",
                      "Longitude": 11.458,
                      "Tide-Data": {
                        "1848-07-01": 6957.0,
                        "1848-08-01": 6944.0,
                        "1848-09-01": 7084.0,
                        "1848-10-01": 6898.0,
                        "1848-11-01": 6859.0
                      }
                    },
                    {
                      "Country": "NLD",
                      "ID": 9,
                      "Latitude": 51.918,
                      "Location": "MAASSLUIS",
                      "Longitude": 4.25,
                      "Tide-Data": {
                        "1848-02-01": 6880.0,
                        "1848-03-01": 6700.0,
                        "1848-04-01": 6775.0,
                        "1848-05-01": 6580.0,
                        "1848-06-01": 6685.0
                      }
                    },
                    {
                      "Country": "USA",
                      "ID": 10,
                      "Latitude": 37.807,
                      "Location": "SAN FRANCISCO",
                      "Longitude": -122.465,
                      "Tide-Data": {
                        "1854-07-01": 6909.0,
                        "1854-08-01": 6940.0,
                        "1854-09-01": 6961.0,
                        "1854-10-01": 6952.0,
                        "1854-11-01": 6952.0
                      }
                    }
                  ]
                  

                  PS 如果你不关心身份,你可以直接写入 JSON 文件:

                  PS if you don't care of idents you can write directly to JSON file:

                  (df.groupby(['ID','Location','Country','Latitude','Longitude'], as_index=False)
                     .apply(lambda x: dict(zip(x.timestamp,x.tide)))
                     .reset_index()
                     .rename(columns={0:'Tide-Data'})
                     .to_json('/path/to/file_name.json', orient='records'))
                  

                  这篇关于将 Pandas 数据框转换为嵌套 JSON的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  Split a Pandas column of lists into multiple columns(将 Pandas 的列表列拆分为多列)
                  How does the @property decorator work in Python?(@property 装饰器在 Python 中是如何工作的?)
                  What is the difference between old style and new style classes in Python?(Python中的旧样式类和新样式类有什么区别?)
                  How to break out of multiple loops?(如何打破多个循环?)
                  How to put the legend out of the plot(如何将传说从情节中剔除)
                  Why is the output of my function printing out quot;Nonequot;?(为什么我的函数输出打印出“无?)
                    • <bdo id='LsPtq'></bdo><ul id='LsPtq'></ul>
                      <i id='LsPtq'><tr id='LsPtq'><dt id='LsPtq'><q id='LsPtq'><span id='LsPtq'><b id='LsPtq'><form id='LsPtq'><ins id='LsPtq'></ins><ul id='LsPtq'></ul><sub id='LsPtq'></sub></form><legend id='LsPtq'></legend><bdo id='LsPtq'><pre id='LsPtq'><center id='LsPtq'></center></pre></bdo></b><th id='LsPtq'></th></span></q></dt></tr></i><div id='LsPtq'><tfoot id='LsPtq'></tfoot><dl id='LsPtq'><fieldset id='LsPtq'></fieldset></dl></div>

                        <tfoot id='LsPtq'></tfoot>
                        <legend id='LsPtq'><style id='LsPtq'><dir id='LsPtq'><q id='LsPtq'></q></dir></style></legend>
                          <tbody id='LsPtq'></tbody>

                          • <small id='LsPtq'></small><noframes id='LsPtq'>