• <i id='Iq72k'><tr id='Iq72k'><dt id='Iq72k'><q id='Iq72k'><span id='Iq72k'><b id='Iq72k'><form id='Iq72k'><ins id='Iq72k'></ins><ul id='Iq72k'></ul><sub id='Iq72k'></sub></form><legend id='Iq72k'></legend><bdo id='Iq72k'><pre id='Iq72k'><center id='Iq72k'></center></pre></bdo></b><th id='Iq72k'></th></span></q></dt></tr></i><div id='Iq72k'><tfoot id='Iq72k'></tfoot><dl id='Iq72k'><fieldset id='Iq72k'></fieldset></dl></div>

      • <bdo id='Iq72k'></bdo><ul id='Iq72k'></ul>
      1. <tfoot id='Iq72k'></tfoot>

      2. <small id='Iq72k'></small><noframes id='Iq72k'>

      3. <legend id='Iq72k'><style id='Iq72k'><dir id='Iq72k'><q id='Iq72k'></q></dir></style></legend>

        如何用Pipenv解决Python包依赖问题?

        How to resolve Python package dependencies with pipenv?(如何用Pipenv解决Python包依赖问题?)
          <bdo id='DqS8H'></bdo><ul id='DqS8H'></ul>
          <legend id='DqS8H'><style id='DqS8H'><dir id='DqS8H'><q id='DqS8H'></q></dir></style></legend>

          <i id='DqS8H'><tr id='DqS8H'><dt id='DqS8H'><q id='DqS8H'><span id='DqS8H'><b id='DqS8H'><form id='DqS8H'><ins id='DqS8H'></ins><ul id='DqS8H'></ul><sub id='DqS8H'></sub></form><legend id='DqS8H'></legend><bdo id='DqS8H'><pre id='DqS8H'><center id='DqS8H'></center></pre></bdo></b><th id='DqS8H'></th></span></q></dt></tr></i><div id='DqS8H'><tfoot id='DqS8H'></tfoot><dl id='DqS8H'><fieldset id='DqS8H'></fieldset></dl></div>
        • <tfoot id='DqS8H'></tfoot>
                <tbody id='DqS8H'></tbody>

                1. <small id='DqS8H'></small><noframes id='DqS8H'>

                  本文介绍了如何用Pipenv解决Python包依赖问题?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  我正在使用pipenv处理Python包依赖项。

                  Python包使用两个包(名为pckg1pckg2),它们依赖名为pckg3的相同包,但来自两个不同的版本。显示依赖关系树:

                  $ pipenv graph
                    pckg1==3.0.0
                      - pckg3 [required: >=4.1.0]
                    pckg2==1.0.2
                      - pckg3 [required: ==4.0.11]
                  

                  尝试安装依赖项:

                  $ pipenv install
                  
                  Warning: Your dependencies could not be resolved. You likely have a mismatch in your sub-dependencies.
                  You can use $ pipenv install --skip-lock to bypass this mechanism, then run $ pipenv graph to inspect the situation.
                  Hint: try $ pipenv lock --pre if it is a pre-release dependency.
                  Could not find a version that matches pckg3==4.0.11,==4.1.0,>=4.1.0 (from -r C:UsersuserAppDataLocalTemppipenv-o7uxm080-requirementspipenv-hwekv7dc-constraints.txt (line 2))
                  Tried: 3.3.1, 3.3.2, 3.3.3, 3.4.0, 3.4.2, 4.0.0, 4.0.0, 4.0.1, 4.0.1, 4.0.2, 4.0.2, 4.0.3, 4.0.3, 4.0.4, 4.0.4, 4.0.6, 4.0.6, 4.0.8, 4.0.8, 4.0.9, 4.0.9, 4.0.10, 4.0.10, 4.0.11, 4.0.11, 4.1.0, 4.1.0, 4.1.1, 4.1.1, 4.1.2, 4.1.2, 4.2.1, 4.2.1, 4.3.0, 4.3.0
                  There are incompatible versions in the resolved dependencies.
                  

                  如建议的那样,pip install --skip-lock起到了作用,但依赖关系树仍未解析。

                  我希望告诉Pipenv覆盖pckg2的要求,并指定pckg3>=4.1.0

                  如何解决此问题?

                  推荐答案

                  我经常收到该错误。每次清除锁文件中的缓存都非常有效。

                  $ pipenv lock --pre --clear

                  这篇关于如何用Pipenv解决Python包依赖问题?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  GUI Freezes while downloading PyQt5 and Pytube(GUI在下载PyQt5和Pytube时冻结)
                  How to solve memory issues while multiprocessing using Pool.map()?(如何解决使用Pool.map()进行多处理时的内存问题?)
                  Python - How to use FastAPI and uvicorn.run without blocking the thread?(Python-如何使用FastAPI和uvicorn.run而不阻塞线程?)
                  How to increment a shared counter from multiple processes?(如何从多个进程递增共享计数器?)
                  Using pika, how to connect to rabbitmq running in docker, started with docker-compose with external network?(使用pika,如何连接运行在docker中的rabbitmq,从docker开始-与外部网络连接?)
                  How to use .rolling() on each row of a Pandas dataframe?(如何对 pandas 数据帧的每一行使用.roll()?)
                      <tbody id='6ZLcH'></tbody>
                    <legend id='6ZLcH'><style id='6ZLcH'><dir id='6ZLcH'><q id='6ZLcH'></q></dir></style></legend>

                  1. <small id='6ZLcH'></small><noframes id='6ZLcH'>

                      • <bdo id='6ZLcH'></bdo><ul id='6ZLcH'></ul>

                        • <i id='6ZLcH'><tr id='6ZLcH'><dt id='6ZLcH'><q id='6ZLcH'><span id='6ZLcH'><b id='6ZLcH'><form id='6ZLcH'><ins id='6ZLcH'></ins><ul id='6ZLcH'></ul><sub id='6ZLcH'></sub></form><legend id='6ZLcH'></legend><bdo id='6ZLcH'><pre id='6ZLcH'><center id='6ZLcH'></center></pre></bdo></b><th id='6ZLcH'></th></span></q></dt></tr></i><div id='6ZLcH'><tfoot id='6ZLcH'></tfoot><dl id='6ZLcH'><fieldset id='6ZLcH'></fieldset></dl></div>

                            <tfoot id='6ZLcH'></tfoot>