<legend id='MJmzU'><style id='MJmzU'><dir id='MJmzU'><q id='MJmzU'></q></dir></style></legend>
      <bdo id='MJmzU'></bdo><ul id='MJmzU'></ul>

        <i id='MJmzU'><tr id='MJmzU'><dt id='MJmzU'><q id='MJmzU'><span id='MJmzU'><b id='MJmzU'><form id='MJmzU'><ins id='MJmzU'></ins><ul id='MJmzU'></ul><sub id='MJmzU'></sub></form><legend id='MJmzU'></legend><bdo id='MJmzU'><pre id='MJmzU'><center id='MJmzU'></center></pre></bdo></b><th id='MJmzU'></th></span></q></dt></tr></i><div id='MJmzU'><tfoot id='MJmzU'></tfoot><dl id='MJmzU'><fieldset id='MJmzU'></fieldset></dl></div>
        <tfoot id='MJmzU'></tfoot>

        <small id='MJmzU'></small><noframes id='MJmzU'>

        如何按正确顺序绘制分组条形图

        How to plot grouped bars in the correct order(如何按正确顺序绘制分组条形图)

        1. <legend id='GWumg'><style id='GWumg'><dir id='GWumg'><q id='GWumg'></q></dir></style></legend>
            <tbody id='GWumg'></tbody>
          <tfoot id='GWumg'></tfoot>
            • <bdo id='GWumg'></bdo><ul id='GWumg'></ul>

                  <i id='GWumg'><tr id='GWumg'><dt id='GWumg'><q id='GWumg'><span id='GWumg'><b id='GWumg'><form id='GWumg'><ins id='GWumg'></ins><ul id='GWumg'></ul><sub id='GWumg'></sub></form><legend id='GWumg'></legend><bdo id='GWumg'><pre id='GWumg'><center id='GWumg'></center></pre></bdo></b><th id='GWumg'></th></span></q></dt></tr></i><div id='GWumg'><tfoot id='GWumg'></tfoot><dl id='GWumg'><fieldset id='GWumg'></fieldset></dl></div>

                  <small id='GWumg'></small><noframes id='GWumg'>

                • 本文介绍了如何按正确顺序绘制分组条形图的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  我正在制作标准化考试的熟练程度分组条形图。以下是我的代码:

                  bush_prof_boy = bush.groupby(['BOY Prof'])['BOY Prof'].count()
                  bush_prof_pct_boy = bush_prof_boy/bush['BOY Prof'].count() * 100
                  bush_prof_eoy = bush.groupby(['EOY Prof'])['EOY Prof'].count()
                  bush_prof_pct_eoy = bush_prof_eoy/bush['EOY Prof'].count() * 100
                  
                  labels = ['Remedial', 'Below Proficient', 'Proficient', 'Advanced']
                  
                  fig, ax = plt.subplots()
                  rects1 = ax.bar(x - width/2, bush_prof_pct_boy, width, label='BOY', 
                  color='mediumorchid')
                  rects2 = ax.bar(x + width/2, bush_prof_pct_eoy, width, label='EOY', color='teal')
                  
                  ax.set_ylabel('% of Students at Proficiency Level', fontsize=18)
                  ax.set_title('Bushwick Middle Change in Proficiency Levels', fontsize=25)
                  ax.set_xticks(x)
                  ax.set_xticklabels(labels, fontsize=25)
                  ax.legend(fontsize=25)
                  plt.yticks(fontsize=15)
                  
                  
                  plt.figure(figsize=(5,15))
                  
                  plt.show()
                  
                  &BOY";代表&年初和&年终,因此条形图旨在显示在年初和年底落入各个熟练程度级别的学生的百分率。?这张图看起来不错,但当我深入到数字中时,我可以看到eoy的标签是不正确的。这是我的图表:

                  男孩的百分比绘制正确,但eoy的百分比标签错误。以下是实际的百分比,我确信它们是正确的:

                  BOY %
                  Advanced            14.0
                  Below Proficient    38.0
                  Proficient          34.0
                  Remedial            14.0
                  
                  EOY %
                  Advanced            39.0
                  Below Proficient    18.0
                  Proficient          32.0
                  Remedial            11.0
                  

                  推荐答案

                  • 使用来自Kaggle: Brooklyn NY Schools的数据
                  • 单独计算条形组可能会有问题。最好在一个数据框内进行计算,对数据框进行整形,然后绘制,因为这将确保条形图绘制在正确的组中。
                  • 由于未提供数据,因此此操作从宽形式的数字数据开始,然后清理和整形数据帧。
                    • 使用.cut
                    • 将数值转换为类别值
                    • 使用.melt将Dataframe转换为长格式,然后使用.groupby计算'x of Year'
                    • 中的百分比
                    • .pivot整形,用pandas.DataFrame.plot绘图
                  • python 3.8pandas 1.3.1matplotlib 3.4.2中测试

                  导入、加载和清理DataFrame

                  import pandas as pd
                  import matplotlib.pyplot as plt
                  import matplotlib.ticker as mtick
                  import numpy as np
                  
                  # data 
                  data = {'BOY': [11.0, 11.0, 11.0, 11.0, 11.0, 8.0, 11.0, 14.0, 12.0, 13.0, 11.0, 14.0, 10.0, 9.0, 10.0, 10.0, 10.0, 12.0, 12.0, 13.0, 12.0, 11.0, 9.0, 12.0, 16.0, 12.0, 12.0, 12.0, 15.0, 10.0, 10.0, 10.0, 8.0, 11.0, 12.0, 14.0, 10.0, 8.0, 11.0, 12.0, 14.0, 12.0, 13.0, 15.0, 13.0, 8.0, 8.0, 11.0, 10.0, 11.0, 13.0, 11.0, 13.0, 15.0, 10.0, 8.0, 10.0, 9.0, 8.0, 11.0, 13.0, 11.0, 8.0, 11.0, 15.0, 11.0, 12.0, 17.0, 12.0, 11.0, 18.0, 14.0, 15.0, 16.0, 7.0, 11.0, 15.0, 16.0, 13.0, 13.0, 13.0, 0.0, 11.0, 15.0, 14.0, 11.0, 13.0, 16.0, 14.0, 12.0, 8.0, 13.0, 13.0, 14.0, 7.0, 10.0, 16.0, 10.0, 13.0, 10.0, 14.0, 8.0, 16.0, 13.0, 12.0, 14.0, 12.0, 14.0, 16.0, 15.0, 13.0, 13.0, 10.0, 14.0, 8.0, 10.0, 10.0, 11.0, 12.0, 10.0, 12.0, 14.0, 17.0, 13.0, 14.0, 16.0, 15.0, 13.0, 16.0, 9.0, 16.0, 15.0, 11.0, 11.0, 15.0, 14.0, 12.0, 15.0, 11.0, 16.0, 14.0, 14.0, 15.0, 14.0, 14.0, 14.0, 16.0, 15.0, 12.0, 12.0, 14.0, 15.0, 13.0, 14.0, 13.0, 17.0, 14.0, 13.0, 14.0, 13.0, 13.0, 12.0, 10.0, 15.0, 14.0, 12.0, 12.0, 14.0, 12.0, 14.0, 13.0, 15.0, 13.0, 14.0, 14.0, 12.0, 11.0, 15.0, 14.0, 14.0, 10.0], 'EOY': [16.0, 16.0, 16.0, 14.0, 10.0, 14.0, 16.0, 14.0, 15.0, 15.0, 15.0, 11.0, 11.0, 15.0, 10.0, 14.0, 17.0, 14.0, 9.0, 15.0, 14.0, 16.0, 14.0, 13.0, 11.0, 13.0, 12.0, 14.0, 15.0, 13.0, 14.0, 15.0, 12.0, 19.0, 9.0, 13.0, 11.0, 14.0, 17.0, 17.0, 14.0, 13.0, 14.0, 10.0, 16.0, 15.0, 12.0, 11.0, 12.0, 14.0, 15.0, 10.0, 15.0, 14.0, 14.0, 15.0, 18.0, 15.0, 10.0, 10.0, 15.0, 15.0, 13.0, 15.0, 19.0, 13.0, 18.0, 20.0, 21.0, 17.0, 18.0, 17.0, 18.0, 17.0, 12.0, 16.0, 15.0, 18.0, 19.0, 17.0, 20.0, 11.0, 18.0, 19.0, 11.0, 12.0, 17.0, 20.0, 17.0, 15.0, 13.0, 18.0, 14.0, 17.0, 12.0, 12.0, 16.0, 12.0, 14.0, 15.0, 14.0, 10.0, 20.0, 13.0, 18.0, 20.0, 11.0, 20.0, 17.0, 20.0, 13.0, 17.0, 15.0, 18.0, 14.0, 13.0, 13.0, 18.0, 10.0, 13.0, 12.0, 18.0, 20.0, 20.0, 16.0, 18.0, 15.0, 20.0, 22.0, 18.0, 21.0, 18.0, 18.0, 18.0, 17.0, 16.0, 19.0, 16.0, 20.0, 19.0, 19.0, 20.0, 20.0, 14.0, 18.0, 20.0, 20.0, 18.0, 16.0, 21.0, 20.0, 18.0, 15.0, 14.0, 17.0, 19.0, 21.0, 14.0, 18.0, 15.0, 18.0, 21.0, 19.0, 17.0, 16.0, 16.0, 15.0, 20.0, 19.0, 16.0, 21.0, 17.0, 19.0, 15.0, 18.0, 20.0, 18.0, 20.0, 18.0, 16.0, 16.0]}
                  df = pd.DataFrame(data)
                  
                  # replace numbers with categorical labels; could also create new columns
                  labels = ['Remedial', 'Below Proficient', 'Proficient', 'Advanced']
                  bins = [1, 11, 13, 15, np.inf]
                  df['BOY'] = pd.cut(x=df.BOY, labels=labels, bins=bins, right=True)
                  df['EOY'] = pd.cut(x=df.EOY, labels=labels, bins=bins, right=True)
                  
                  # melt the relevant columns into a long form
                  dfm = df.melt(var_name='Tested', value_name='Proficiency')
                  
                  # set the categorical label order, which makes the xaxis labels print in the specific order
                  dfm['Proficiency'] = pd.Categorical(dfm['Proficiency'], labels, ordered=True)
                  

                  绘制的分组方式、百分比计算和形状

                  # groupby and get the value counts
                  dfg = dfm.groupby('Tested')['Proficiency'].value_counts().reset_index(level=1, name='Size').rename({'level_1': 'Proficiency'}, axis=1)
                  
                  # divide by the Tested value counts to get the percent
                  dfg['percent'] = dfg['Size'].div(dfm.Tested.value_counts()).mul(100).round(1)
                  
                  # reshape to plot
                  dfp = dfg.reset_index().pivot(index='Proficiency', columns='Tested', values='percent')
                  
                  # display(dfp)
                  Tested             BOY   EOY
                  Proficiency                 
                  Remedial          34.8   9.9
                  Below Proficient  28.7  12.7
                  Proficient        27.1  25.4
                  Advanced           8.8  51.9
                  

                  绘图

                  ax = dfp.plot(kind='bar', figsize=(15, 5), rot=0, color=['orchid', 'teal'])
                  
                  # formatting
                  ax.yaxis.set_major_formatter(mtick.PercentFormatter())
                  ax.set_ylabel('Students at Proficiency Level', fontsize=18)
                  ax.set_xlabel('')
                  ax.set_title('Bushwick Middle Change in Proficiency Levels', fontsize=25)
                  ax.set_xticklabels(ax.get_xticklabels(), fontsize=25)
                  ax.legend(fontsize=25)
                  _ = plt.yticks(fontsize=15)
                  
                  # add bar labels
                  for p in ax.containers:
                      ax.bar_label(p, fmt='%.1f%%', label_type='edge', fontsize=12)
                      
                  # pad the spacing between the number and the edge of the figure
                  ax.margins(y=0.2)
                  
                  • 查看条形图标签是否匹配dfp

                  这篇关于如何按正确顺序绘制分组条形图的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
                  Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
                  Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
                  Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
                  Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
                  Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
                  <i id='IZ5oB'><tr id='IZ5oB'><dt id='IZ5oB'><q id='IZ5oB'><span id='IZ5oB'><b id='IZ5oB'><form id='IZ5oB'><ins id='IZ5oB'></ins><ul id='IZ5oB'></ul><sub id='IZ5oB'></sub></form><legend id='IZ5oB'></legend><bdo id='IZ5oB'><pre id='IZ5oB'><center id='IZ5oB'></center></pre></bdo></b><th id='IZ5oB'></th></span></q></dt></tr></i><div id='IZ5oB'><tfoot id='IZ5oB'></tfoot><dl id='IZ5oB'><fieldset id='IZ5oB'></fieldset></dl></div>
                    <tbody id='IZ5oB'></tbody>
                  • <bdo id='IZ5oB'></bdo><ul id='IZ5oB'></ul>

                          <small id='IZ5oB'></small><noframes id='IZ5oB'>

                          • <legend id='IZ5oB'><style id='IZ5oB'><dir id='IZ5oB'><q id='IZ5oB'></q></dir></style></legend>

                            <tfoot id='IZ5oB'></tfoot>