<bdo id='u44h9'></bdo><ul id='u44h9'></ul>

      <i id='u44h9'><tr id='u44h9'><dt id='u44h9'><q id='u44h9'><span id='u44h9'><b id='u44h9'><form id='u44h9'><ins id='u44h9'></ins><ul id='u44h9'></ul><sub id='u44h9'></sub></form><legend id='u44h9'></legend><bdo id='u44h9'><pre id='u44h9'><center id='u44h9'></center></pre></bdo></b><th id='u44h9'></th></span></q></dt></tr></i><div id='u44h9'><tfoot id='u44h9'></tfoot><dl id='u44h9'><fieldset id='u44h9'></fieldset></dl></div>
    1. <small id='u44h9'></small><noframes id='u44h9'>

      <legend id='u44h9'><style id='u44h9'><dir id='u44h9'><q id='u44h9'></q></dir></style></legend><tfoot id='u44h9'></tfoot>
    2. pandas 分组并将行转换为多列

      pandas group by and convert rows into multiple columns( pandas 分组并将行转换为多列)

        <i id='E1pdR'><tr id='E1pdR'><dt id='E1pdR'><q id='E1pdR'><span id='E1pdR'><b id='E1pdR'><form id='E1pdR'><ins id='E1pdR'></ins><ul id='E1pdR'></ul><sub id='E1pdR'></sub></form><legend id='E1pdR'></legend><bdo id='E1pdR'><pre id='E1pdR'><center id='E1pdR'></center></pre></bdo></b><th id='E1pdR'></th></span></q></dt></tr></i><div id='E1pdR'><tfoot id='E1pdR'></tfoot><dl id='E1pdR'><fieldset id='E1pdR'></fieldset></dl></div>
      1. <legend id='E1pdR'><style id='E1pdR'><dir id='E1pdR'><q id='E1pdR'></q></dir></style></legend>
                <tbody id='E1pdR'></tbody>
              <tfoot id='E1pdR'></tfoot>
                <bdo id='E1pdR'></bdo><ul id='E1pdR'></ul>

                <small id='E1pdR'></small><noframes id='E1pdR'>

                本文介绍了 pandas 分组并将行转换为多列的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                问题描述

                data = {'groupId':[1,1,2], 'email':['a1@gmail.com', 'a2@gmail.com', 'a3@gmail.com'],
                        'type':['office','personal','personal'],'name':['santy','santy','will']} 
                df = pd.DataFrame(data) 
                

                我有一个这样的数据帧

                groupId email   type           name
                1   a1@gmail.com    office      santy
                1   a2@gmail.com    personal    santy
                2   a3@gmail.com    personal    will
                
                

                我要根据特定组中的行数将行转换为动态列

                groupId email1         type1   email2          type2       name
                1      a1@gmail.com  office    a2@gmail.com    personal    santy
                2      a3@gmail.com   personal   na              na        will
                

                我知道可以将SET_INDEX与UNSTACK一起使用,但是不知道如何才能给出列名并创建特定组中的那么多列。

                有没有有效的方法做到这一点? 如有任何帮助,我们将不胜感激

                推荐答案

                您可以执行以下操作:

                new_df = (df.assign(col=df.groupby('groupId').cumcount()+1)
                   .set_index(['groupId','col'])
                   .unstack('col')
                   .sort_index(level=(1,0), axis=1)
                )
                
                new_df.columns = [f'{x}{y}' for x,y in new_df.columns]
                

                输出:

                               email1     type1        email2     type2
                groupId                                                
                1        a1@gmail.com    office  a2@gmail.com  personal
                2        a3@gmail.com  personal           NaN       NaN
                

                这篇关于 pandas 分组并将行转换为多列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                相关文档推荐

                groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
                Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
                Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
                Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
                Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
                Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
                    <tbody id='DP6jm'></tbody>
                  • <i id='DP6jm'><tr id='DP6jm'><dt id='DP6jm'><q id='DP6jm'><span id='DP6jm'><b id='DP6jm'><form id='DP6jm'><ins id='DP6jm'></ins><ul id='DP6jm'></ul><sub id='DP6jm'></sub></form><legend id='DP6jm'></legend><bdo id='DP6jm'><pre id='DP6jm'><center id='DP6jm'></center></pre></bdo></b><th id='DP6jm'></th></span></q></dt></tr></i><div id='DP6jm'><tfoot id='DP6jm'></tfoot><dl id='DP6jm'><fieldset id='DP6jm'></fieldset></dl></div>

                    <legend id='DP6jm'><style id='DP6jm'><dir id='DP6jm'><q id='DP6jm'></q></dir></style></legend>

                    1. <small id='DP6jm'></small><noframes id='DP6jm'>

                      • <bdo id='DP6jm'></bdo><ul id='DP6jm'></ul>
                        <tfoot id='DP6jm'></tfoot>