<legend id='yj6S6'><style id='yj6S6'><dir id='yj6S6'><q id='yj6S6'></q></dir></style></legend>

    <small id='yj6S6'></small><noframes id='yj6S6'>

        <tfoot id='yj6S6'></tfoot>

      1. <i id='yj6S6'><tr id='yj6S6'><dt id='yj6S6'><q id='yj6S6'><span id='yj6S6'><b id='yj6S6'><form id='yj6S6'><ins id='yj6S6'></ins><ul id='yj6S6'></ul><sub id='yj6S6'></sub></form><legend id='yj6S6'></legend><bdo id='yj6S6'><pre id='yj6S6'><center id='yj6S6'></center></pre></bdo></b><th id='yj6S6'></th></span></q></dt></tr></i><div id='yj6S6'><tfoot id='yj6S6'></tfoot><dl id='yj6S6'><fieldset id='yj6S6'></fieldset></dl></div>

          <bdo id='yj6S6'></bdo><ul id='yj6S6'></ul>
      2. 按10分钟间隔对 pandas 数据帧进行分组

        Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)
          <bdo id='QIybi'></bdo><ul id='QIybi'></ul>
          <legend id='QIybi'><style id='QIybi'><dir id='QIybi'><q id='QIybi'></q></dir></style></legend><tfoot id='QIybi'></tfoot>

          • <i id='QIybi'><tr id='QIybi'><dt id='QIybi'><q id='QIybi'><span id='QIybi'><b id='QIybi'><form id='QIybi'><ins id='QIybi'></ins><ul id='QIybi'></ul><sub id='QIybi'></sub></form><legend id='QIybi'></legend><bdo id='QIybi'><pre id='QIybi'><center id='QIybi'></center></pre></bdo></b><th id='QIybi'></th></span></q></dt></tr></i><div id='QIybi'><tfoot id='QIybi'></tfoot><dl id='QIybi'><fieldset id='QIybi'></fieldset></dl></div>

            <small id='QIybi'></small><noframes id='QIybi'>

                    <tbody id='QIybi'></tbody>

                1. 本文介绍了按10分钟间隔对 pandas 数据帧进行分组的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  给定以下 pandas 数据帧:

                              timestamp
                  0     2018-10-05 23:07:02
                  1     2018-10-05 23:07:13
                  2     2018-10-05 23:07:23
                  3     2018-10-05 23:07:36
                  4     2018-10-05 23:08:02
                  5     2018-10-05 23:09:16
                  6     2018-10-05 23:09:21
                  7     2018-10-05 23:09:39
                  8     2018-10-05 23:09:47
                  9     2018-10-05 23:10:01
                  10    2018-10-05 23:10:11
                  11    2018-10-05 23:10:23
                  12    2018-10-05 23:10:59
                  13    2018-10-05 23:11:03
                  14    2018-10-08 03:35:32
                  15    2018-10-08 03:35:58
                  16    2018-10-08 03:37:16
                  17    2018-10-08 03:38:04
                  18    2018-10-08 03:38:30
                  19    2018-10-08 03:38:36
                  20    2018-10-08 03:38:42
                  21    2018-10-08 03:38:52
                  22    2018-10-08 03:38:57
                  23    2018-10-08 03:39:10
                  24    2018-10-08 03:39:27
                  25    2018-10-08 03:40:47
                  26    2018-10-08 03:40:54
                  27    2018-10-08 03:41:02
                  28    2018-10-08 03:41:12
                  29    2018-10-08 03:41:32
                  
                  如何在每行10分钟的时间段内进行标记?例如:

                              timestamp       10min_period
                  0     2018-10-05 23:07:02   period_1
                  2     2018-10-05 23:07:23   period_1
                  1     2018-10-05 23:07:13   period_1
                  2     2018-10-05 23:07:23   period_1
                  3     2018-10-05 23:07:36   period_1
                  4     2018-10-05 23:08:02   period_1
                  5     2018-10-05 23:09:16   period_1
                  6     2018-10-05 23:09:21   period_1
                  7     2018-10-05 23:09:39   period_1
                  8     2018-10-05 23:09:47   period_1
                  9     2018-10-05 23:10:01   period_1
                  10    2018-10-05 23:10:11   period_1
                  11    2018-10-05 23:10:23   period_1
                  12    2018-10-05 23:10:59   period_1
                  13    2018-10-05 23:11:03   period_1
                  14    2018-10-08 03:35:32   period_2
                  15    2018-10-08 03:35:58   period_2
                  16    2018-10-08 03:37:16   period_2
                  17    2018-10-08 03:38:04   period_2
                  18    2018-10-08 03:38:30   period_2
                  19    2018-10-08 03:38:36   period_2
                  20    2018-10-08 03:38:42   period_2
                  21    2018-10-08 03:38:52   period_2
                  22    2018-10-08 03:38:57   period_2
                  23    2018-10-08 03:39:10   period_2
                  24    2018-10-08 03:39:27   period_2
                  25    2018-10-08 03:40:47   period_2
                  26    2018-10-08 04:40:54   period_3
                  27    2018-10-08 04:41:02   period_3
                  28    2018-10-08 04:41:12   period_3
                  29    2018-10-08 04:41:32   period_3
                  
                  正如您在上面的预期输出中看到的,每个period_n标签都是通过计算10分钟的时间段来创建的,当日期时间序列超过10分钟的阈值时,就会创建一个新的标签。我尝试使用dt.floor(10Min)对象,但是,它不起作用,因为它没有记录从哪里开始,从哪里结束,计算10分钟的时间。我也试着:

                  a = df['timestamp'].offsets.DateOffset(minutes=10)

                  然而,它不起作用。你知道如何将我的df分割成10分钟的时间段吗?这项质询与其他质询不同,因为我没有指明何时开始计算。也就是说,我从第一个DateTime行实例开始计数,并从该实例开始计算10个时间分钟的周期。

                  更新:

                  转换为DateTime对象后,我还尝试

                  df['timestamp'].groupby(pd.TimeGrouper(freq='10Min'))

                  但是,我收到了:

                  TypeError: Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, but got an instance of 'RangeIndex'
                  

                  推荐答案

                  df['timestamp'] = pd.to_datetime(df['timestamp'])
                  diffs = df['timestamp'] - df['timestamp'].shift()
                  laps = diffs > pd.Timedelta('10 min')
                  periods = laps.cumsum().apply(lambda x: 'period_{}'.format(x+1))
                  df['10min_period'] = periods
                  

                  这篇关于按10分钟间隔对 pandas 数据帧进行分组的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
                  Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
                  Is there a way of group by month in Pandas starting at specific day number?( pandas 有从特定日期开始的按月分组的方式吗?)
                  Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
                  Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
                  Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)

                    <i id='9Uzy9'><tr id='9Uzy9'><dt id='9Uzy9'><q id='9Uzy9'><span id='9Uzy9'><b id='9Uzy9'><form id='9Uzy9'><ins id='9Uzy9'></ins><ul id='9Uzy9'></ul><sub id='9Uzy9'></sub></form><legend id='9Uzy9'></legend><bdo id='9Uzy9'><pre id='9Uzy9'><center id='9Uzy9'></center></pre></bdo></b><th id='9Uzy9'></th></span></q></dt></tr></i><div id='9Uzy9'><tfoot id='9Uzy9'></tfoot><dl id='9Uzy9'><fieldset id='9Uzy9'></fieldset></dl></div>

                    <legend id='9Uzy9'><style id='9Uzy9'><dir id='9Uzy9'><q id='9Uzy9'></q></dir></style></legend>

                        <small id='9Uzy9'></small><noframes id='9Uzy9'>

                        <tfoot id='9Uzy9'></tfoot>
                            <bdo id='9Uzy9'></bdo><ul id='9Uzy9'></ul>
                              <tbody id='9Uzy9'></tbody>