本文介绍了如何在 Python sqlite3 中将现有的 db 文件加载到内存中?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!
问题描述
我有一个现有的 sqlite3
db 文件,我需要对其进行一些广泛的计算.从文件中进行计算非常缓慢,而且由于文件不大(~10 MB
),因此将其加载到内存中应该没有问题.
I have an existing sqlite3
db file, on which I need to make some extensive calculations. Doing the calculations from the file is painfully slow, and as the file is not large (~10 MB
), so there should be no problem to load it into memory.
是否有一种 Pythonic 的方法可以将现有文件加载到内存中以加快计算速度?
Is there a Pythonic way to load the existing file into memory in order to speed up the calculations?
推荐答案
这是我为我的 Flask 应用程序编写的代码片段:
Here is the snippet that I wrote for my flask application:
import sqlite3
from io import StringIO
def init_sqlite_db(app):
# Read database to tempfile
con = sqlite3.connect(app.config['SQLITE_DATABASE'])
tempfile = StringIO()
for line in con.iterdump():
tempfile.write('%s
' % line)
con.close()
tempfile.seek(0)
# Create a database in memory and import from tempfile
app.sqlite = sqlite3.connect(":memory:")
app.sqlite.cursor().executescript(tempfile.read())
app.sqlite.commit()
app.sqlite.row_factory = sqlite3.Row
这篇关于如何在 Python sqlite3 中将现有的 db 文件加载到内存中?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!
本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!