本文介绍了索引对之间子数组中值的 Numpy 总和的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!
问题描述
假设我有一个数组 A.我有一系列索引对 (a1, b1), (a2, b2) ... (an, bn)
Suppose I have an array A. I have a series of index pairs (a1, b1), (a2, b2) ... (an, bn)
我想获得这些对之间元素的所有总和.即
I want to obtain all the sums of the elements between those pairs. i.e.
sum(A[a1:b1]), sum(A[a2:b2]), sum(A[a3:b3]) ...
就运行时而言,最有效的方法是什么?
In terms of run-time, what's the most efficient way of doing this?
谢谢!
推荐答案
假设您的索引对存储在形状为 (n, 2)
的 NumPy 数组 indices
和n
相当大,最好避免任何 Python 循环:
Assuming your index pairs are stored in a NumPy array indices
of shape (n, 2)
and n
is fairly large, it is probably best to avoid any Python loop:
c = numpy.r_[0, A.cumsum()][indices]
sums = c[:,1] - c[:,0]
这篇关于索引对之间子数组中值的 Numpy 总和的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!
本站部分内容来源互联网,如果有图片或者内容侵犯您的权益请联系我们删除!