Python Pandas 用顶行替换标题

Python Pandas Replacing Header with Top Row(Python Pandas 用顶行替换标题)
本文介绍了Python Pandas 用顶行替换标题的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我目前有一个如下所示的数据框:

I currently have a dataframe that looks like this:

           Unnamed: 1    Unnamed: 2   Unnamed: 3  Unnamed: 4
0   Sample Number  Group Number  Sample Name  Group Name
1             1.0           1.0          s_1         g_1
2             2.0           1.0          s_2         g_1
3             3.0           1.0          s_3         g_1
4             4.0           2.0          s_4         g_2

我正在寻找一种删除标题行并使第一行成为新标题行的方法,因此新的数据框将如下所示:

I'm looking for a way to delete the header row and make the first row the new header row, so the new dataframe would look like this:

    Sample Number  Group Number  Sample Name  Group Name
0             1.0           1.0          s_1         g_1
1             2.0           1.0          s_2         g_1
2             3.0           1.0          s_3         g_1
3             4.0           2.0          s_4         g_2

我已经尝试了 if 'Unnamed' in df.columns: 的内容,然后制作没有标题的数据框 df.to_csv(newformat,header=False,index=假) 但我似乎没有得到任何结果.

I've tried stuff along the lines of if 'Unnamed' in df.columns: then make the dataframe without the header df.to_csv(newformat,header=False,index=False) but I don't seem to be getting anywhere.

推荐答案

new_header = df.iloc[0] #grab the first row for the header
df = df[1:] #take the data less the header row
df.columns = new_header #set the header row as the df header

这篇关于Python Pandas 用顶行替换标题的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

Seasonal Decomposition of Time Series by Loess with Python(Loess 用 Python 对时间序列进行季节性分解)
Resample a time series with the index of another time series(使用另一个时间序列的索引重新采样一个时间序列)
How can I simply calculate the rolling/moving variance of a time series in python?(如何在 python 中简单地计算时间序列的滚动/移动方差?)
How to use Dynamic Time warping with kNN in python(如何在python中使用动态时间扭曲和kNN)
Keras LSTM: a time-series multi-step multi-features forecasting - poor results(Keras LSTM:时间序列多步多特征预测 - 结果不佳)
Python pandas time series interpolation and regularization(Python pandas 时间序列插值和正则化)