为什么使用 Celery 而不是 RabbitMQ?

Why use Celery instead of RabbitMQ?(为什么使用 Celery 而不是 RabbitMQ?)
本文介绍了为什么使用 Celery 而不是 RabbitMQ?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

据我了解,Celery 是一个分布式任务队列,这意味着它唯一应该做的就是将任务/作业分派到其他服务器并取回结果.RabbitMQ 是一个消息队列,仅此而已.但是,worker 可以只监听 MQ 并在收到消息时执行任务.这完全实现了 Celery 提供的功能,那么为什么还需要 Celery?

From my understanding, Celery is a distributed task queue, which means the only thing that it should do is dispatching tasks/jobs to others servers and get the result back. RabbitMQ is a message queue, and nothing more. However, a worker could just listen to the MQ and execute the task when a message is received. This achieves exactly what Celery offers, so why need Celery at all?

推荐答案

你是对的,你根本不需要 Celery.当你设计一个分布式系统时,有很多选择,没有适合所有情况的正确方法.

You are right, you don't need Celery at all. When you are designing a distributed system there are a lot of options and there is no right way to do things that fits all situations.

许多人发现让消息消费者池等待消息出现在他们的队列中、做一些工作并在工作完成后发送消息会更加灵活.

Many people find that it is more flexible to have pools of message consumers waiting for a message to appear on their queue, doing some work, and sending a message when the work is finished.

Celery 是一个框架,它将很多东西封装在一个包中,但如果你真的不需要整个包,那么最好设置 RabbitMQ 并实现你所需要的,而不需要所有的复杂性.另外,除了Celery实现的任务队列场景,RabbitMQ还可以用在更多的场景中.

Celery is a framework that wraps up a whole lot of things in a package but if you don't really need the whole package, then it is better to set up RabbitMQ and implement just what you need without all the complexity. In addition, RabbitMQ can be used in many more scenarios besides the task queue scenario that Celery implements.

但如果你确实选择了 Celery,那么请三思而后行 RabbitMQ.Celery 的消息队列模型非常简单,它确实更适合 Redis 之类的东西而不是 RabbitMQ.Rabbit 有很多 Celery 基本上忽略的选项.

But if you do choose Celery, then think twice about RabbitMQ. Celery's message queueing model is simplistic and it is really a better fit for something like Redis than for RabbitMQ. Rabbit has a rich set of options that Celery basically ignores.

这篇关于为什么使用 Celery 而不是 RabbitMQ?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

Seasonal Decomposition of Time Series by Loess with Python(Loess 用 Python 对时间序列进行季节性分解)
Resample a time series with the index of another time series(使用另一个时间序列的索引重新采样一个时间序列)
How can I simply calculate the rolling/moving variance of a time series in python?(如何在 python 中简单地计算时间序列的滚动/移动方差?)
How to use Dynamic Time warping with kNN in python(如何在python中使用动态时间扭曲和kNN)
Keras LSTM: a time-series multi-step multi-features forecasting - poor results(Keras LSTM:时间序列多步多特征预测 - 结果不佳)
Python pandas time series interpolation and regularization(Python pandas 时间序列插值和正则化)