用于 AMQP 的优秀 Python 库

Good Python library for AMQP(用于 AMQP 的优秀 Python 库)
本文介绍了用于 AMQP 的优秀 Python 库的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

您能否推荐用于访问 AMQP (RabbitMQ) 的 Python 库?根据我的研究,pika 似乎是首选.

Can you recommend what Python library to use for accessing AMQP (RabbitMQ)? From my research pika seems to be the preferred one.

推荐答案

Pika 是 RabbitMQ 推荐库,py-ampqlib 也被提及.根据您使用 Rabbit 的目的,您可能还想查看 Celery(专用于分布式队列的客户端库).

Pika is the RabbitMQ recommended library, and py-ampqlib is also mentioned. Depending on what you're using Rabbit for, you might also want to look at Celery (a client library dedicated to distributed queuing).

同样,根据使用情况,您可能还想查看 Apache 的 qpid,它是一个完整的 AMPQ-基于客户端-服务器的 RabbitMQ 替代方案.qpid 吸引我们的一件事是它似乎在服务器崩溃时具有更好的鲁棒性(队列以分布式方式持久化).

Again, depending on usage, you might also want to look at Apache's qpid which is a full AMPQ-based client-server alternative to RabbitMQ. One thing that attracted us to qpid was that it seemed to have better robustness on server crashes (queues are persisted in a distributed fashion).

这篇关于用于 AMQP 的优秀 Python 库的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

Seasonal Decomposition of Time Series by Loess with Python(Loess 用 Python 对时间序列进行季节性分解)
Resample a time series with the index of another time series(使用另一个时间序列的索引重新采样一个时间序列)
How can I simply calculate the rolling/moving variance of a time series in python?(如何在 python 中简单地计算时间序列的滚动/移动方差?)
How to use Dynamic Time warping with kNN in python(如何在python中使用动态时间扭曲和kNN)
Keras LSTM: a time-series multi-step multi-features forecasting - poor results(Keras LSTM:时间序列多步多特征预测 - 结果不佳)
Python pandas time series interpolation and regularization(Python pandas 时间序列插值和正则化)