按标签运行规范

Running specs by tag(按标签运行规范)
本文介绍了按标签运行规范的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

在 Python 和 nosetests 测试框架中有 标记你的测试:

In Python and nosetests testing framework there is this idea of tagging your tests:

from nose.plugins.attrib import attr

@attr(speed='slow')
def test_big_download():
    ...

并运行只有特定标签的测试:

and running the tests that have only specific tags:

nosetests -a speed=slow

当需要运行特定类别或类型的测试时,这非常有用.

This is very helpful when there is a need to run tests from a specific category or type.

protractor + jasmine有类似的吗?

Is there anything similar in protractor + jasmine?

我发现最接近的功能是 'grep' 选项1.6.0中引入的:

The closest functionality I've found is the 'grep' option introduced in 1.6.0:

protractor conf.js --grep='pattern to match'

推荐答案

Grep 是最接近这个的,因为 js 中没有注释.

Grep is the closest you can get to this because there are no annotations in js.

这篇关于按标签运行规范的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

Seasonal Decomposition of Time Series by Loess with Python(Loess 用 Python 对时间序列进行季节性分解)
Resample a time series with the index of another time series(使用另一个时间序列的索引重新采样一个时间序列)
How can I simply calculate the rolling/moving variance of a time series in python?(如何在 python 中简单地计算时间序列的滚动/移动方差?)
How to use Dynamic Time warping with kNN in python(如何在python中使用动态时间扭曲和kNN)
Keras LSTM: a time-series multi-step multi-features forecasting - poor results(Keras LSTM:时间序列多步多特征预测 - 结果不佳)
Python pandas time series interpolation and regularization(Python pandas 时间序列插值和正则化)