<small id='FBMTN'></small><noframes id='FBMTN'>

    <bdo id='FBMTN'></bdo><ul id='FBMTN'></ul>
    <tfoot id='FBMTN'></tfoot>

  1. <legend id='FBMTN'><style id='FBMTN'><dir id='FBMTN'><q id='FBMTN'></q></dir></style></legend>

    1. <i id='FBMTN'><tr id='FBMTN'><dt id='FBMTN'><q id='FBMTN'><span id='FBMTN'><b id='FBMTN'><form id='FBMTN'><ins id='FBMTN'></ins><ul id='FBMTN'></ul><sub id='FBMTN'></sub></form><legend id='FBMTN'></legend><bdo id='FBMTN'><pre id='FBMTN'><center id='FBMTN'></center></pre></bdo></b><th id='FBMTN'></th></span></q></dt></tr></i><div id='FBMTN'><tfoot id='FBMTN'></tfoot><dl id='FBMTN'><fieldset id='FBMTN'></fieldset></dl></div>
    2. pandas:删除重复行,同时保留虚拟变量值

      pandas: drop duplicate rows while keeping dummy variables values(pandas:删除重复行,同时保留虚拟变量值)

      <small id='4hxLP'></small><noframes id='4hxLP'>

          <tfoot id='4hxLP'></tfoot>
              <bdo id='4hxLP'></bdo><ul id='4hxLP'></ul>
            • <legend id='4hxLP'><style id='4hxLP'><dir id='4hxLP'><q id='4hxLP'></q></dir></style></legend>
              <i id='4hxLP'><tr id='4hxLP'><dt id='4hxLP'><q id='4hxLP'><span id='4hxLP'><b id='4hxLP'><form id='4hxLP'><ins id='4hxLP'></ins><ul id='4hxLP'></ul><sub id='4hxLP'></sub></form><legend id='4hxLP'></legend><bdo id='4hxLP'><pre id='4hxLP'><center id='4hxLP'></center></pre></bdo></b><th id='4hxLP'></th></span></q></dt></tr></i><div id='4hxLP'><tfoot id='4hxLP'></tfoot><dl id='4hxLP'><fieldset id='4hxLP'></fieldset></dl></div>
                <tbody id='4hxLP'></tbody>

              1. 本文介绍了pandas:删除重复行,同时保留虚拟变量值的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                问题描述

                我有以下数据框示例:

                child_id   feature_1   feature_2   feature_3   feature_4   feature_5
                   10          1           0           0          0            0
                   10          0           0           1          0            0
                   10          0           1           0          0            0
                   10          0           0           0          1            0
                   20          0           0           0          0            1
                   20          1           0           0          0            0
                   20          0           1           1          0            0
                   20          0           0           0          0            0
                

                但是,我想要这个堆叠的数据框,所以子 ID 不会重复多次:

                However, I would like to have this stacked dataframe, so children IDs are not repeated several times:

                child_id   feature_1   feature_2   feature_3   feature_4   feature_5
                   10          1           1           1           1           0
                   20          1           1           1           0           1
                

                由于每一行都不同,我不能简单地删除重复项.有任何想法吗?非常感谢!

                As every row is different, I cannot simply drop the duplicates. Any ideas? Thank you very much!

                推荐答案

                child_id  = [10,10,10,10,20,20,20,20]  
                feature_1 = [1,0,0,0,0,1,0,0]  
                feature_2 = [0,0,1,0,0,0,1,0]
                feature_3 = [0,1,0,0,0,0,1,1]  
                feature_4 = [0,0,0,1,0,0,0,0]
                feature_5 = [0,0,0,0,1,0,0,0]
                
                import pandas as pd
                df = pd.DataFrame(zip(child_id,feature_1,feature_2,feature_3,feature_4,feature_5),columns=['A','B','C','D','E','F'])
                df
                
                df.groupby('A').max()
                
                 #10       1    1   1   1   0
                 #20       1    1   1   0   1
                

                这篇关于pandas:删除重复行,同时保留虚拟变量值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                相关文档推荐

                Plotly: How to make a line plot from a pandas dataframe with a long or wide format?(Plotly:如何使用长格式或宽格式的 pandas 数据框制作线图?)
                Pandas: How to easily share a sample dataframe using df.to_dict()?(Pandas:如何使用 df.to_dict() 轻松共享示例数据框?)
                PYODBC to Pandas - DataFrame not working - Shape of passed values is (x,y), indices imply (w,z)(PYODBC 到 Pandas - DataFrame 不起作用 - 传递值的形状是(x,y),索引暗示(w,z))
                Scikit-learn labeled dataset creation from segmented time series(从分段时间序列创建 Scikit-learn 标记数据集)
                Chunking, processing amp; merging dataset in Pandas/Python(分块、处理和在 Pandas/Python 中合并数据集)
                TypeError: object of type #39;numpy.int64#39; has no len()(TypeError:“numpy.int64类型的对象没有 len())

                <i id='cOUXA'><tr id='cOUXA'><dt id='cOUXA'><q id='cOUXA'><span id='cOUXA'><b id='cOUXA'><form id='cOUXA'><ins id='cOUXA'></ins><ul id='cOUXA'></ul><sub id='cOUXA'></sub></form><legend id='cOUXA'></legend><bdo id='cOUXA'><pre id='cOUXA'><center id='cOUXA'></center></pre></bdo></b><th id='cOUXA'></th></span></q></dt></tr></i><div id='cOUXA'><tfoot id='cOUXA'></tfoot><dl id='cOUXA'><fieldset id='cOUXA'></fieldset></dl></div>

                <small id='cOUXA'></small><noframes id='cOUXA'>

                <legend id='cOUXA'><style id='cOUXA'><dir id='cOUXA'><q id='cOUXA'></q></dir></style></legend>
                  <bdo id='cOUXA'></bdo><ul id='cOUXA'></ul>
                    <tbody id='cOUXA'></tbody>

                      • <tfoot id='cOUXA'></tfoot>