<tfoot id='bZ7oU'></tfoot>

    1. <i id='bZ7oU'><tr id='bZ7oU'><dt id='bZ7oU'><q id='bZ7oU'><span id='bZ7oU'><b id='bZ7oU'><form id='bZ7oU'><ins id='bZ7oU'></ins><ul id='bZ7oU'></ul><sub id='bZ7oU'></sub></form><legend id='bZ7oU'></legend><bdo id='bZ7oU'><pre id='bZ7oU'><center id='bZ7oU'></center></pre></bdo></b><th id='bZ7oU'></th></span></q></dt></tr></i><div id='bZ7oU'><tfoot id='bZ7oU'></tfoot><dl id='bZ7oU'><fieldset id='bZ7oU'></fieldset></dl></div>
        <bdo id='bZ7oU'></bdo><ul id='bZ7oU'></ul>
    2. <legend id='bZ7oU'><style id='bZ7oU'><dir id='bZ7oU'><q id='bZ7oU'></q></dir></style></legend>

      <small id='bZ7oU'></small><noframes id='bZ7oU'>

      Plotly:如何使用长格式或宽格式的 pandas 数据框制作线图?

      Plotly: How to make a line plot from a pandas dataframe with a long or wide format?(Plotly:如何使用长格式或宽格式的 pandas 数据框制作线图?)

          <i id='KVZL2'><tr id='KVZL2'><dt id='KVZL2'><q id='KVZL2'><span id='KVZL2'><b id='KVZL2'><form id='KVZL2'><ins id='KVZL2'></ins><ul id='KVZL2'></ul><sub id='KVZL2'></sub></form><legend id='KVZL2'></legend><bdo id='KVZL2'><pre id='KVZL2'><center id='KVZL2'></center></pre></bdo></b><th id='KVZL2'></th></span></q></dt></tr></i><div id='KVZL2'><tfoot id='KVZL2'></tfoot><dl id='KVZL2'><fieldset id='KVZL2'></fieldset></dl></div>

            <tbody id='KVZL2'></tbody>
        1. <small id='KVZL2'></small><noframes id='KVZL2'>

        2. <tfoot id='KVZL2'></tfoot>
          <legend id='KVZL2'><style id='KVZL2'><dir id='KVZL2'><q id='KVZL2'></q></dir></style></legend>
              <bdo id='KVZL2'></bdo><ul id='KVZL2'></ul>

              • 本文介绍了Plotly:如何使用长格式或宽格式的 pandas 数据框制作线图?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                问题描述

                (这是一篇自我回答的帖子,通过不必解释 plotly 如何最好地处理长格式和宽格式数据来帮助其他人缩短他们对 plotly 问题的答案)

                <小时>

                我想在尽可能少的行中基于 pandas 数据框构建一个绘图图.我知道你可以使用 plotly.express 来做到这一点,但这对于我称之为标准 pandas 数据框的方法来说是失败的;描述行顺序的索引,以及描述数据框中值名称的列名:

                示例数据框:

                 a b c0 100.000000 100.000000 100.0000001 98.493705 99.421400 101.6514372 96.067026 98.992487 102.9173733 95.200286 98.313601 102.8226644 96.691675 97.674699 102.378682

                尝试:

                fig=px.line(x=df.index, y = df.columns)

                这会引发错误:

                <块引用>

                ValueError:所有参数的长度应该相同.参数 y 的长度是 3,而前面的参数 ['x'] 的长度是 100`

                解决方案

                在这里,您尝试使用宽格式的 pandas 数据框作为 px.line 的源.plotly.express 旨在与

                如何使用px绘制长数据?

                fig = px.line(df, x='id', y='value', color='variable')

                如何使用 go 绘制宽数据?

                colors = px.colors.qualitative.Plotlyfig = go.Figure()fig.add_traces(go.Scatter(x=df['id'], y = df['a'], mode = 'lines', line=dict(color=colors[0])))fig.add_traces(go.Scatter(x=df['id'], y = df['b'], mode = 'lines', line=dict(color=colors[1])))fig.add_traces(go.Scatter(x=df['id'], y = df['c'], mode = 'lines', line=dict(color=colors[2])))图.show()

                从表面上看,go 更复杂,或许更灵活?嗯,是.和不.您可以使用 px 轻松构建图形并添加您想要的任何 go 对象!

                完整的 go 代码段:

                将 numpy 导入为 np将熊猫导入为 pd将 plotly.express 导入为 px导入 plotly.graph_objects# 宽格式数据帧np.random.seed(123)X = np.random.randn(100,3)df=pd.DataFrame(X, columns=['a','b','c'])df=df.cumsum()df['id']=df.index# plotly.graph_objects颜色 = px.colors.qualitative.Plotlyfig = go.Figure()fig.add_traces(go.Scatter(x=df['id'], y = df['a'], mode = 'lines', line=dict(color=colors[0])))fig.add_traces(go.Scatter(x=df['id'], y = df['b'], mode = 'lines', line=dict(color=colors[1])))fig.add_traces(go.Scatter(x=df['id'], y = df['c'], mode = 'lines', line=dict(color=colors[2])))图.show()

                完整的像素片段:

                将 numpy 导入为 np将熊猫导入为 pd将 plotly.express 导入为 px从 plotly.offline 导入 iplot# 宽格式数据帧np.random.seed(123)X = np.random.randn(100,3)df=pd.DataFrame(X, columns=['a','b','c'])df=df.cumsum()df['id']=df.index# 长格式数据帧df = pd.melt(df, id_vars='id', value_vars=df.columns[:-1])# 情节表达fig = px.line(df, x='id', y='值', color='变量')图.show()

                (This is a self-answered post to help others shorten their answers to plotly questions by not having to explain how plotly best handles data of long and wide format)


                I'd like to build a plotly figure based on a pandas dataframe in as few lines as possible. I know you can do that using plotly.express, but this fails for what I would call a standard pandas dataframe; an index describing row order, and column names describing the names of a value in a dataframe:

                Sample dataframe:

                    a           b           c
                0   100.000000  100.000000  100.000000
                1   98.493705   99.421400   101.651437
                2   96.067026   98.992487   102.917373
                3   95.200286   98.313601   102.822664
                4   96.691675   97.674699   102.378682
                

                An attempt:

                fig=px.line(x=df.index, y = df.columns)
                

                This raises an error:

                ValueError: All arguments should have the same length. The length of argument y is 3, whereas the length of previous arguments ['x'] is 100`

                解决方案

                Here you've tried to use a pandas dataframe of a wide format as a source for px.line. And plotly.express is designed to be used with dataframes of a long format, often referred to as tidy data (and please take a look at that. No one explains it better that Wickham). Many, particularly those injured by years of battling with Excel, often find it easier to organize data in a wide format. So what's the difference?

                Wide format:

                • data is presented with each different data variable in a separate column
                • each column has only one data type
                • missing values are often represented by np.nan
                • works best with plotly.graphobjects (go)
                • lines are often added to a figure using fid.add_traces()
                • colors are normally assigned to each trace

                Example:

                            a          b           c
                0   -1.085631    0.997345   0.282978
                1   -2.591925    0.418745   1.934415
                2   -5.018605   -0.010167   3.200351
                3   -5.885345   -0.689054   3.105642
                4   -4.393955   -1.327956   2.661660
                5   -4.828307    0.877975   4.848446
                6   -3.824253    1.264161   5.585815
                7   -2.333521    0.328327   6.761644
                8   -3.587401   -0.309424   7.668749
                9   -5.016082   -0.449493   6.806994
                

                Long format:

                • data is presented with one column containing all the values and another column listing the context of the value
                • missing values are simply not included in the dataset.
                • works best with plotly.express (px)
                • colors are set by a default color cycle and are assigned to each unique variable

                Example:

                    id  variable    value
                0   0   a        -1.085631
                1   1   a        -2.591925
                2   2   a        -5.018605
                3   3   a        -5.885345
                4   4   a        -4.393955
                ... ... ... ...
                295 95  c        -4.259035
                296 96  c        -5.333802
                297 97  c        -6.211415
                298 98  c        -4.335615
                299 99  c        -3.515854
                

                How to go from wide to long?

                df = pd.melt(df, id_vars='id', value_vars=df.columns[:-1])
                

                The two snippets below will produce the very same plot:

                How to use px to plot long data?

                fig = px.line(df, x='id', y='value', color='variable')
                

                How to use go to plot wide data?

                colors = px.colors.qualitative.Plotly
                fig = go.Figure()
                fig.add_traces(go.Scatter(x=df['id'], y = df['a'], mode = 'lines', line=dict(color=colors[0])))
                fig.add_traces(go.Scatter(x=df['id'], y = df['b'], mode = 'lines', line=dict(color=colors[1])))
                fig.add_traces(go.Scatter(x=df['id'], y = df['c'], mode = 'lines', line=dict(color=colors[2])))
                fig.show()
                

                By the looks of it, go is more complicated and offers perhaps more flexibility? Well, yes. And no. You can easily build a figure using px and add any go object you'd like!

                Complete go snippet:

                import numpy as np
                import pandas as pd
                import plotly.express as px
                import plotly.graph_objects as go
                
                # dataframe of a wide format
                np.random.seed(123)
                X = np.random.randn(100,3)  
                df=pd.DataFrame(X, columns=['a','b','c'])
                df=df.cumsum()
                df['id']=df.index
                
                # plotly.graph_objects
                colors = px.colors.qualitative.Plotly
                fig = go.Figure()
                fig.add_traces(go.Scatter(x=df['id'], y = df['a'], mode = 'lines', line=dict(color=colors[0])))
                fig.add_traces(go.Scatter(x=df['id'], y = df['b'], mode = 'lines', line=dict(color=colors[1])))
                fig.add_traces(go.Scatter(x=df['id'], y = df['c'], mode = 'lines', line=dict(color=colors[2])))
                fig.show()
                

                Complete px snippet:

                import numpy as np
                import pandas as pd
                import plotly.express as px
                from plotly.offline import iplot
                
                # dataframe of a wide format
                np.random.seed(123)
                X = np.random.randn(100,3)  
                df=pd.DataFrame(X, columns=['a','b','c'])
                df=df.cumsum()
                df['id']=df.index
                
                # dataframe of a long format
                df = pd.melt(df, id_vars='id', value_vars=df.columns[:-1])
                
                # plotly express
                fig = px.line(df, x='id', y='value', color='variable')
                fig.show()
                

                这篇关于Plotly:如何使用长格式或宽格式的 pandas 数据框制作线图?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                相关文档推荐

                Adding config modes to Plotly.Py offline - modebar(将配置模式添加到 Plotly.Py 离线 - 模式栏)
                Plotly: How to style a plotly figure so that it doesn#39;t display gaps for missing dates?(Plotly:如何设置绘图图形的样式,使其不显示缺失日期的间隙?)
                python save plotly plot to local file and insert into html(python将绘图保存到本地文件并插入到html中)
                Plotly: What color cycle does plotly express follow?(情节:情节表达遵循什么颜色循环?)
                How to save plotly express plot into a html or static image file?(如何将情节表达图保存到 html 或静态图像文件中?)
                Plotly legend next to each subplot, Python(在每个子图旁边绘制图例,Python)
              • <legend id='FJGIv'><style id='FJGIv'><dir id='FJGIv'><q id='FJGIv'></q></dir></style></legend>
                  <i id='FJGIv'><tr id='FJGIv'><dt id='FJGIv'><q id='FJGIv'><span id='FJGIv'><b id='FJGIv'><form id='FJGIv'><ins id='FJGIv'></ins><ul id='FJGIv'></ul><sub id='FJGIv'></sub></form><legend id='FJGIv'></legend><bdo id='FJGIv'><pre id='FJGIv'><center id='FJGIv'></center></pre></bdo></b><th id='FJGIv'></th></span></q></dt></tr></i><div id='FJGIv'><tfoot id='FJGIv'></tfoot><dl id='FJGIv'><fieldset id='FJGIv'></fieldset></dl></div>

                        <bdo id='FJGIv'></bdo><ul id='FJGIv'></ul>

                            <tbody id='FJGIv'></tbody>
                        1. <tfoot id='FJGIv'></tfoot>

                          <small id='FJGIv'></small><noframes id='FJGIv'>