• <i id='mJGwP'><tr id='mJGwP'><dt id='mJGwP'><q id='mJGwP'><span id='mJGwP'><b id='mJGwP'><form id='mJGwP'><ins id='mJGwP'></ins><ul id='mJGwP'></ul><sub id='mJGwP'></sub></form><legend id='mJGwP'></legend><bdo id='mJGwP'><pre id='mJGwP'><center id='mJGwP'></center></pre></bdo></b><th id='mJGwP'></th></span></q></dt></tr></i><div id='mJGwP'><tfoot id='mJGwP'></tfoot><dl id='mJGwP'><fieldset id='mJGwP'></fieldset></dl></div>
    <legend id='mJGwP'><style id='mJGwP'><dir id='mJGwP'><q id='mJGwP'></q></dir></style></legend>

    1. <small id='mJGwP'></small><noframes id='mJGwP'>

        <tfoot id='mJGwP'></tfoot>

          <bdo id='mJGwP'></bdo><ul id='mJGwP'></ul>

        Python 脚本在进展过程中变慢?

        Python Script slowing down as it progresses?(Python 脚本在进展过程中变慢?)

        <i id='ZhFqy'><tr id='ZhFqy'><dt id='ZhFqy'><q id='ZhFqy'><span id='ZhFqy'><b id='ZhFqy'><form id='ZhFqy'><ins id='ZhFqy'></ins><ul id='ZhFqy'></ul><sub id='ZhFqy'></sub></form><legend id='ZhFqy'></legend><bdo id='ZhFqy'><pre id='ZhFqy'><center id='ZhFqy'></center></pre></bdo></b><th id='ZhFqy'></th></span></q></dt></tr></i><div id='ZhFqy'><tfoot id='ZhFqy'></tfoot><dl id='ZhFqy'><fieldset id='ZhFqy'></fieldset></dl></div>

            <bdo id='ZhFqy'></bdo><ul id='ZhFqy'></ul>

            <small id='ZhFqy'></small><noframes id='ZhFqy'>

              <tbody id='ZhFqy'></tbody>
            <tfoot id='ZhFqy'></tfoot>

                  <legend id='ZhFqy'><style id='ZhFqy'><dir id='ZhFqy'><q id='ZhFqy'></q></dir></style></legend>
                  本文介绍了Python 脚本在进展过程中变慢?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  I have a simulation running that has this basic structure:

                  from time import time
                  
                  def CSV(*args):
                      #write * args to .CSV file
                      return
                  
                  def timeleft(a,L,period):
                      print(#details on how long last period took, ETA#)
                  
                  for L in range(0,6,4):
                      for a in range(1,100):
                          timeA = time()
                  
                              for t in range(1,1000):
                  
                                  ## Manufacturer in Supply Chain ##
                  
                                  inventory_accounting_lists.append(#simple calculations#)
                  
                                      # Simulation to determine the optimal B-value (Basestock level)
                  
                                      for B in range(1,100):
                                          for tau in range(1,1000):
                                                  ## simple inventory accounting operations##
                  
                                  ## Distributor in Supply Chain ##
                  
                                  inventory_accounting_lists.append(#simple calculations#)
                  
                                      # Simulation to determine the optimal B-value (Basestock level)
                  
                                      for B in range(1,100):
                                          for tau in range(1,1000):
                                                  ## simple inventory accounting operations##
                  
                                  ## Wholesaler in Supply Chain ##
                  
                                  inventory_accounting_lists.append(#simple calculations#)
                  
                                      # Simulation to determine the optimal B-value (Basestock level)
                  
                                      for B in range(1,100):
                                          for tau in range(1,1000):
                                                  ## simple inventory accounting operations##
                  
                                  ## Retailer in Supply Chain ##
                  
                                  inventory_accounting_lists.append(#simple calculations#)
                  
                                      # Simulation to determine the optimal B-value (Basestock level)
                  
                                      for B in range(1,100):
                                          for tau in range(1,1000):
                                                  ## simple inventory accounting operations##
                  
                  
                          CSV(Simulation_Results)
                  
                          timeB = time()
                  
                          timeleft(a,L,timeB-timeA)
                  

                  As the script continues, it seems to be getting slower and slower. Here is what it is for these values (and it increases linearly as a increases).

                  • L = 0, a = 1: 1.15 minutes
                  • L = 0, a = 99: 1.7 minutes
                  • L = 2, a = 1: 2.7 minutes
                  • L = 2, a = 99: 5.15 minutes
                  • L = 4, a = 1: 4.5 minutes
                  • L = 4, a = 15: 4.95 minutes (this is the latest value it has reached)

                  Why would each iteration take longer? Each iteration of the loop essentially resets everything except for a master global list, which is being added to each time. However, loops inside each "period" aren't accessing this master list -- they are accessing the same local list every time.

                  EDIT 1: I will post the simulation code here, in case anyone wants to wade through it, but I warn you, it is rather long, and the variable names are probably unnecessarily confusing.

                  #########
                  a = 0.01
                  L = 0
                  total = 1000
                  sim = 500
                  inv_cost = 1
                  bl_cost = 4
                  #########
                  
                  # Functions
                  
                  import random
                  from time import time
                  time0 = time()
                  
                  # function to report ETA etc.
                  
                  def timeleft(a,L,period_time):
                      if L==0:
                          periods_left = ((1-a)*100)-1+2*99
                      if L==2:
                          periods_left = ((1-a)*100)-1+99
                      if L==4:
                          periods_left = ((1-a)*100)-1+0*99
                  
                      minute_time = period_time/60
                  
                      minutes_left = (periods_left*period_time)/60
                      hours_left = (periods_left*period_time)/3600
                      percentage_complete = 100*((297-periods_left)/297)
                  
                      print("Time for last period = ","%.2f" % minute_time," minutes")
                  
                      print("%.2f" % percentage_complete,"% complete")
                      if hours_left<1:
                          print("%.2f" % minutes_left," minutes left")
                      else:
                          print("%.2f" % hours_left," hours left")
                      print("")
                      return
                  
                  def dcopy(inList):
                      if isinstance(inList, list):
                          return list( map(dcopy, inList) )
                      return inList
                  
                  # Save values to .CSV file
                  
                  def CSV(a,L,I_STD_1,I_STD_2,I_STD_3,I_STD_4,O_STD_0,
                          O_STD_1,O_STD_2,O_STD_3,O_STD_4):
                  
                      pass
                  
                  # Initialization
                  
                  # These are the global, master lists of data
                  
                  I_STD_1 = [[0],[0],[0]]
                  I_STD_2 = [[0],[0],[0]]
                  I_STD_3 = [[0],[0],[0]]
                  I_STD_4 = [[0],[0],[0]]
                  
                  O_STD_0 = [[0],[0],[0]]
                  O_STD_1 = [[0],[0],[0]]
                  O_STD_2 = [[0],[0],[0]]
                  O_STD_3 = [[0],[0],[0]]
                  O_STD_4 = [[0],[0],[0]]
                  
                  for L in range(0,6,2):
                  
                      # These are local lists that are appended to at the end of every period
                  
                      I_STD_1_L = []
                      I_STD_2_L = []
                      I_STD_3_L = []
                      I_STD_4_L = []
                  
                      O_STD_0_L = []
                      O_STD_1_L = []
                      O_STD_2_L = []
                      O_STD_3_L = []
                      O_STD_4_L = []
                  
                      test = []
                  
                      for n in range(1,100):          # THIS is the start of the 99 value loop
                  
                          a = n/100
                  
                          print ("L=",L,", alpha=",a)
                  
                          # Initialization for each Period
                  
                          F_1 = [0,10]            # Forecast
                          F_2 = [0,10]
                          F_3 = [0,10]
                          F_4 = [0,10]
                  
                          R_0 = [10]              # Items Received
                          R_1 = [10]
                          R_2 = [10]
                          R_3 = [10]
                          R_4 = [10]
                  
                          for i in range(L):
                              R_1.append(10)
                              R_2.append(10)
                              R_3.append(10)
                              R_4.append(10)
                  
                          I_1 = [10]              # Final Inventory
                          I_2 = [10]
                          I_3 = [10]
                          I_4 = [10]
                  
                          IP_1 = [10+10*L]        # Inventory Position
                          IP_2 = [10+10*L]
                          IP_3 = [10+10*L]
                          IP_4 = [10+10*L]
                  
                          O_1 = [10]              # Items Ordered
                          O_2 = [10]
                          O_3 = [10]
                          O_4 = [10]
                  
                          BL_1 = [0]              # Backlog
                          BL_2 = [0]
                          BL_3 = [0]
                          BL_4 = [0]
                  
                          OH_1 = [20]             # Items on Hand
                          OH_2 = [20]
                          OH_3 = [20]
                          OH_4 = [20]
                  
                          OR_1 = [10]             # Order received from customer
                          OR_2 = [10]
                          OR_3 = [10]
                          OR_4 = [10]
                  
                          Db_1 = [10]             # Running Average Demand
                          Db_2 = [10]
                          Db_3 = [10]
                          Db_4 = [10]
                  
                          var_1 = [0]             # Running Variance in Demand
                          var_2 = [0]
                          var_3 = [0]
                          var_4 = [0]
                  
                          B_1 = [IP_1[0]+10]      # Optimal Basestock
                          B_2 = [IP_2[0]+10]
                          B_3 = [IP_3[0]+10]
                          B_4 = [IP_4[0]+10]
                  
                          D = [0,10]              # End constomer demand
                  
                          for i in range(total+1):
                              D.append(9)
                              D.append(12)
                              D.append(8)
                              D.append(11)
                  
                          period = [0]
                  
                          from time import time
                          timeA = time()
                  
                          # 1000 time periods t
                  
                          for t in range(1,total+1):
                  
                              period.append(t)
                  
                  
                              #### MANUFACTURER ####
                  
                              # Manufacturing order from previous time period put into production
                              R_4.append(O_4[t-1])
                  
                              #recieve shipment from supplier, calculate items OH HAND
                              if I_4[t-1]<0:
                                  OH_4.append(R_4[t])
                              else:
                                  OH_4.append(I_4[t-1]+R_4[t])
                  
                              # Recieve and dispatch order, update Inventory and Backlog for time t
                  
                              if (O_3[t-1] + BL_4[t-1]) <= OH_4[t]:               # No Backlog
                                  I_4.append(OH_4[t] - (O_3[t-1] + BL_4[t-1]))
                                  BL_4.append(0)
                                  R_3.append(O_3[t-1]+BL_4[t-1])
                              else:
                                  I_4.append(OH_4[t] - (O_3[t-1] + BL_4[t-1]))    # Backlogged
                                  BL_4.append(-I_4[t])
                                  R_3.append(OH_4[t])
                  
                              # Update Inventory Position
                              IP_4.append(IP_4[t-1] + O_4[t-1] - O_3[t-1])
                  
                              # Use exponential smoothing to forecast future demand
                              future_demand = (1-a)*F_4[t] + a*O_3[t-1]
                              F_4.append(future_demand)
                  
                              # Calculate D_bar(t) and Var(t)
                              Db_4.append((1/t)*sum(O_3[0:t]))
                              s = 0
                              for i in range(0,t):
                                  s+=(O_3[i]-Db_4[t])**2
                  
                              if t==1:
                                  var_4.append(0)                                 # var(1) = 0
                              else:
                                  var_4.append((1/(t-1))*s)
                  
                              # Simulation to determine B(t)
                              S_BC_4 = [10000000000]*10
                              Run_4 = [0]*10
                              for B in range(10,500):
                  
                                  S_OH_4 = OH_4[:]
                                  S_I_4 = I_4[:]
                                  S_R_4 = R_4[:]
                                  S_BL_4 = BL_4[:]
                                  S_IP_4 = IP_4[:]
                                  S_O_4 = O_4[:]
                  
                                  # Update O(t)(the period just before the simulation begins)
                                  # using the B value for the simulation
                                  if B - S_IP_4[t] > 0:              
                                      S_O_4.append(B - S_IP_4[t])
                                  else:
                                      S_O_4.append(0)
                  
                                  c = 0
                  
                                  for i in range(t+1,t+sim+1):
                  
                                      S_R_4.append(S_O_4[i-1])
                  
                                      #simulate demand
                                      demand = -1
                                      while demand <0:
                                          demand = random.normalvariate(F_4[t+1],(var_4[t])**(.5))
                  
                                      # Receive simulated shipment, calculate simulated items on hand
                  
                                      if S_I_4[i-1]<0:
                                          S_OH_4.append(S_R_4[i])
                                      else:
                                          S_OH_4.append(S_I_4[i-1]+S_R_4[i])
                  
                                      # Receive and send order, update Inventory and Backlog (simulated)
                  
                                      owed = (demand + S_BL_4[i-1])
                                      S_I_4.append(S_OH_4[i] - owed)
                                      if owed <= S_OH_4[i]:                               # No Backlog
                                          S_BL_4.append(0)
                                          c += inv_cost*S_I_4[i]
                                      else:
                                          S_BL_4.append(-S_I_4[i])                        # Backlogged
                                          c += bl_cost*S_BL_4[i]
                  
                                      # Update Inventory Position
                                      S_IP_4.append(S_IP_4[i-1] + S_O_4[i-1] - demand)
                  
                                      # Update Order, Upstream member dispatches goods
                                      if (B-S_IP_4[i]) > 0:
                                          S_O_4.append(B - S_IP_4[i])
                                      else:
                                          S_O_4.append(0)
                  
                                  # Log Simulation costs for that B-value
                                  S_BC_4.append(c)
                  
                                  # If the simulated costs are increasing, stop
                                  if B>11:
                                      dummy = []
                  
                                      for i in range(0,10):
                                          dummy.append(S_BC_4[B-i]-S_BC_4[B-i-1])
                                      Run_4.append(sum(dummy)/float(len(dummy)))
                  
                                      if Run_4[B-3] > 0 and B>20:
                                          break
                                  else:
                                      Run_4.append(0)
                  
                              # Use minimum cost as new B(t)
                              var = min((val, idx) for (idx, val) in enumerate(S_BC_4))
                              optimal_B = var[1]
                              B_4.append(optimal_B)
                  
                              # Calculate O(t)
                              if B_4[t] - IP_4[t] > 0:
                                  O_4.append(B_4[t] - IP_4[t])
                              else:
                                  O_4.append(0)
                  
                  
                  
                  
                              #### DISTRIBUTOR ####
                  
                              #recieve shipment from supplier, calculate items OH HAND
                              if I_3[t-1]<0:
                                  OH_3.append(R_3[t])
                              else:
                                  OH_3.append(I_3[t-1]+R_3[t])
                  
                              # Recieve and dispatch order, update Inventory and Backlog for time t
                  
                              if (O_2[t-1] + BL_3[t-1]) <= OH_3[t]:               # No Backlog
                                  I_3.append(OH_3[t] - (O_2[t-1] + BL_3[t-1]))
                                  BL_3.append(0)
                                  R_2.append(O_2[t-1]+BL_3[t-1])
                              else:
                                  I_3.append(OH_3[t] - (O_2[t-1] + BL_3[t-1]))    # Backlogged
                                  BL_3.append(-I_3[t])
                                  R_2.append(OH_3[t])
                  
                              # Update Inventory Position
                              IP_3.append(IP_3[t-1] + O_3[t-1] - O_2[t-1])
                  
                              # Use exponential smoothing to forecast future demand
                              future_demand = (1-a)*F_3[t] + a*O_2[t-1]
                              F_3.append(future_demand)
                  
                              # Calculate D_bar(t) and Var(t)
                              Db_3.append((1/t)*sum(O_2[0:t]))
                              s = 0
                              for i in range(0,t):
                                  s+=(O_2[i]-Db_3[t])**2
                  
                              if t==1:
                                  var_3.append(0)                                 # var(1) = 0
                              else:
                                  var_3.append((1/(t-1))*s)
                  
                              # Simulation to determine B(t)
                              S_BC_3 = [10000000000]*10
                              Run_3 = [0]*10
                  
                              for B in range(10,500):
                                  S_OH_3 = OH_3[:]
                                  S_I_3 = I_3[:]
                                  S_R_3 = R_3[:]
                                  S_BL_3 = BL_3[:]
                                  S_IP_3 = IP_3[:]
                                  S_O_3 = O_3[:]
                  
                                  # Update O(t)(the period just before the simulation begins)
                                  # using the B value for the simulation
                                  if B - S_IP_3[t] > 0:              
                                      S_O_3.append(B - S_IP_3[t])
                                  else:
                                      S_O_3.append(0)
                                  c = 0
                                  for i in range(t+1,t+sim+1):
                  
                                      #simulate demand
                                      demand = -1
                                      while demand <0:
                                          demand = random.normalvariate(F_3[t+1],(var_3[t])**(.5))
                  
                                      S_R_3.append(S_O_3[i-1])
                  
                                      # Receive simulated shipment, calculate simulated items on hand
                                      if S_I_3[i-1]<0:
                                          S_OH_3.append(S_R_3[i])
                                      else:
                                          S_OH_3.append(S_I_3[i-1]+S_R_3[i])
                  
                                      # Receive and send order, update Inventory and Backlog (simulated)
                                      owed = (demand + S_BL_3[i-1])
                                      S_I_3.append(S_OH_3[i] - owed)
                                      if owed <= S_OH_3[i]:                               # No Backlog
                                          S_BL_3.append(0)
                                          c += inv_cost*S_I_3[i]
                                      else:
                                          S_BL_3.append(-S_I_3[i])                        # Backlogged
                                          c += bl_cost*S_BL_3[i]
                  
                                      # Update Inventory Position
                                      S_IP_3.append(S_IP_3[i-1] + S_O_3[i-1] - demand)
                  
                                      # Update Order, Upstream member dispatches goods
                                      if (B-S_IP_3[i]) > 0:
                                          S_O_3.append(B - S_IP_3[i])
                                      else:
                                          S_O_3.append(0)
                  
                                  # Log Simulation costs for that B-value
                                  S_BC_3.append(c)
                  
                                  # If the simulated costs are increasing, stop
                                  if B>11:
                                      dummy = []
                  
                                      for i in range(0,10):
                                          dummy.append(S_BC_3[B-i]-S_BC_3[B-i-1])
                                      Run_3.append(sum(dummy)/float(len(dummy)))
                  
                                      if Run_3[B-3] > 0 and B>20:
                                          break
                                  else:
                                      Run_3.append(0)
                  
                              # Use minimum cost as new B(t)
                              var = min((val, idx) for (idx, val) in enumerate(S_BC_3))
                              optimal_B = var[1]
                              B_3.append(optimal_B)
                  
                              # Calculate O(t)
                              if B_3[t] - IP_3[t] > 0:
                                  O_3.append(B_3[t] - IP_3[t])
                              else:
                                  O_3.append(0)
                  
                  
                  
                              #### WHOLESALER ####
                  
                              #recieve shipment from supplier, calculate items OH HAND
                              if I_2[t-1]<0:
                                  OH_2.append(R_2[t])
                              else:
                                  OH_2.append(I_2[t-1]+R_2[t])
                  
                              # Recieve and dispatch order, update Inventory and Backlog for time t
                  
                              if (O_1[t-1] + BL_2[t-1]) <= OH_2[t]:               # No Backlog
                                  I_2.append(OH_2[t] - (O_1[t-1] + BL_2[t-1]))
                                  BL_2.append(0)
                                  R_1.append(O_1[t-1]+BL_2[t-1])
                  
                              else:
                                  I_2.append(OH_2[t] - (O_1[t-1] + BL_2[t-1]))    # Backlogged
                                  BL_2.append(-I_2[t])
                                  R_1.append(OH_2[t])
                  
                              # Update Inventory Position
                              IP_2.append(IP_2[t-1] + O_2[t-1] - O_1[t-1])
                  
                              # Use exponential smoothing to forecast future demand
                              future_demand = (1-a)*F_2[t] + a*O_1[t-1]
                              F_2.append(future_demand)
                  
                              # Calculate D_bar(t) and Var(t)
                              Db_2.append((1/t)*sum(O_1[0:t]))
                              s = 0
                              for i in range(0,t):
                                  s+=(O_1[i]-Db_2[t])**2
                  
                              if t==1:
                                  var_2.append(0)                                 # var(1) = 0
                              else:
                                  var_2.append((1/(t-1))*s)
                  
                              # Simulation to determine B(t)
                              S_BC_2 = [10000000000]*10
                              Run_2 = [0]*10
                  
                              for B in range(10,500):
                                  S_OH_2 = OH_2[:]
                                  S_I_2 = I_2[:]
                                  S_R_2 = R_2[:]
                                  S_BL_2 = BL_2[:]
                                  S_IP_2 = IP_2[:]
                                  S_O_2 = O_2[:]
                  
                                  # Update O(t)(the period just before the simulation begins)
                                  # using the B value for the simulation
                                  if B - S_IP_2[t] > 0:              
                                      S_O_2.append(B - S_IP_2[t])
                                  else:
                                      S_O_2.append(0)
                                  c = 0
                  
                                  for i in range(t+1,t+sim+1):
                  
                                      #simulate demand
                                      demand = -1
                                      while demand <0:
                                          demand = random.normalvariate(F_2[t+1],(var_2[t])**(.5))
                  
                                      # Receive simulated shipment, calculate simulated items on hand
                                      S_R_2.append(S_O_2[i-1])
                  
                                      if S_I_2[i-1]<0:
                                          S_OH_2.append(S_R_2[i])
                                      else:
                                          S_OH_2.append(S_I_2[i-1]+S_R_2[i])
                  
                                      # Receive and send order, update Inventory and Backlog (simulated)
                  
                                      owed = (demand + S_BL_2[i-1])
                                      S_I_2.append(S_OH_2[i] - owed)
                                      if owed <= S_OH_2[i]:                               # No Backlog
                                          S_BL_2.append(0)
                                          c += inv_cost*S_I_2[i]
                                      else:
                                          S_BL_2.append(-S_I_2[i])                        # Backlogged
                                          c += bl_cost*S_BL_2[i]
                  
                                      # Update Inventory Position
                                      S_IP_2.append(S_IP_2[i-1] + S_O_2[i-1] - demand)
                  
                                      # Update Order, Upstream member dispatches goods
                                      if (B-S_IP_2[i]) > 0:
                                          S_O_2.append(B - S_IP_2[i])
                                      else:
                                          S_O_2.append(0)
                  
                                  # Log Simulation costs for that B-value
                                  S_BC_2.append(c)
                  
                                  # If the simulated costs are increasing, stop
                                  if B>11:
                                      dummy = []
                                      for i in range(0,10):
                                          dummy.append(S_BC_2[B-i]-S_BC_2[B-i-1])
                                      Run_2.append(sum(dummy)/float(len(dummy)))
                  
                                      if Run_2[B-3] > 0 and B>20:
                                          break
                                  else:
                                      Run_2.append(0)
                  
                              # Use minimum cost as new B(t)
                              var = min((val, idx) for (idx, val) in enumerate(S_BC_2))
                              optimal_B = var[1]
                              B_2.append(optimal_B)
                  
                              # Calculate O(t)
                              if B_2[t] - IP_2[t] > 0:
                                  O_2.append(B_2[t] - IP_2[t])
                              else:
                                  O_2.append(0)
                  
                  
                  
                  
                  
                              #### RETAILER ####
                  
                              #recieve shipment from supplier, calculate items OH HAND
                              if I_1[t-1]<0:
                                  OH_1.append(R_1[t])
                              else:
                                  OH_1.append(I_1[t-1]+R_1[t])
                  
                              # Recieve and dispatch order, update Inventory and Backlog for time t
                  
                              if (D[t] +BL_1[t-1]) <= OH_1[t]:              # No Backlog
                                  I_1.append(OH_1[t] - (D[t] + BL_1[t-1]))
                                  BL_1.append(0)
                                  R_0.append(D[t]+BL_1[t-1])
                              else:
                                  I_1.append(OH_1[t] - (D[t] + BL_1[t-1]))  # Backlogged
                                  BL_1.append(-I_1[t])
                                  R_0.append(OH_1[t])
                  
                              # Update Inventory Position
                              IP_1.append(IP_1[t-1] + O_1[t-1] - D[t])
                  
                              # Use exponential smoothing to forecast future demand
                              future_demand = (1-a)*F_1[t] + a*D[t]
                              F_1.append(future_demand)
                  
                              # Calculate D_bar(t) and Var(t)
                              Db_1.append((1/t)*sum(D[1:t+1]))
                              s = 0
                              for i in range(1,t+1):
                                  s+=(D[i]-Db_1[t])**2
                  
                              if t==1:                                            # Var(1) = 0
                                  var_1.append(0)
                              else:
                                  var_1.append((1/(t-1))*s)
                  
                              # Simulation to determine B(t)
                              S_BC_1 = [10000000000]*10
                              Run_1 = [0]*10
                              for B in range(10,500):
                                  S_OH_1 = OH_1[:]
                                  S_I_1 = I_1[:]
                                  S_R_1 = R_1[:]
                                  S_BL_1 = BL_1[:]
                                  S_IP_1 = IP_1[:]
                                  S_O_1 = O_1[:]
                  
                                  # Update O(t)(the period just before the simulation begins)
                                  # using the B value for the simulation
                                  if B - S_IP_1[t] > 0:              
                                      S_O_1.append(B - S_IP_1[t])
                                  else:
                                      S_O_1.append(0)
                  
                                  c=0
                                  for i in range(t+1,t+sim+1):
                  
                                      #simulate demand
                                      demand = -1
                                      while demand <0:
                                          demand = random.normalvariate(F_1[t+1],(var_1[t])**(.5))
                  
                                      S_R_1.append(S_O_1[i-1])
                  
                                      # Receive simulated shipment, calculate simulated items on hand
                                      if S_I_1[i-1]<0:
                                          S_OH_1.append(S_R_1[i])
                                      else:
                                          S_OH_1.append(S_I_1[i-1]+S_R_1[i])
                  
                                      # Receive and send order, update Inventory and Backlog (simulated)
                                      owed = (demand + S_BL_1[i-1])
                                      S_I_1.append(S_OH_1[i] - owed)
                                      if owed <= S_OH_1[i]:                               # No Backlog
                                          S_BL_1.append(0)
                                          c += inv_cost*S_I_1[i]
                                      else:
                                          S_BL_1.append(-S_I_1[i])                        # Backlogged
                                          c += bl_cost*S_BL_1[i]
                  
                                      # Update Inventory Position
                                      S_IP_1.append(S_IP_1[i-1] + S_O_1[i-1] - demand)
                  
                                      # Update Order, Upstream member dispatches goods
                                      if (B-S_IP_1[i]) > 0:
                                          S_O_1.append(B - S_IP_1[i])
                                      else:
                                          S_O_1.append(0)
                  
                                  # Log Simulation costs for that B-value
                                  S_BC_1.append(c)
                  
                                  # If the simulated costs are increasing, stop
                                  if B>11:
                                      dummy = []
                                      for i in range(0,10):
                                          dummy.append(S_BC_1[B-i]-S_BC_1[B-i-1])
                                      Run_1.append(sum(dummy)/float(len(dummy)))
                  
                                      if Run_1[B-3] > 0 and B>20:
                                          break
                                  else:
                                      Run_1.append(0)
                  
                              # Use minimum as your new B(t)
                              var = min((val, idx) for (idx, val) in enumerate(S_BC_1))
                              optimal_B = var[1]
                              B_1.append(optimal_B)
                  
                              # Calculate O(t)
                              if B_1[t] - IP_1[t] > 0:
                                  O_1.append(B_1[t] - IP_1[t])
                              else:
                                  O_1.append(0)
                  
                  
                          ### Calculate the Standard Devation of the last half of time periods ###
                  
                          def STD(numbers):
                              k = len(numbers)
                              mean = sum(numbers) / k
                              SD = (sum([dev*dev for dev in [x-mean for x in numbers]])/(k-1))**.5
                              return SD
                  
                          start = (total//2)+1
                  
                          # Only use the last half of the time periods to calculate the standard deviation
                  
                          I_STD_1_L.append(STD(I_1[start:]))
                          I_STD_2_L.append(STD(I_2[start:]))
                          I_STD_3_L.append(STD(I_3[start:]))
                          I_STD_4_L.append(STD(I_4[start:]))
                  
                          O_STD_0_L.append(STD(D[start:]))
                          O_STD_1_L.append(STD(O_1[start:]))
                          O_STD_2_L.append(STD(O_2[start:]))
                          O_STD_3_L.append(STD(O_3[start:]))
                          O_STD_4_L.append(STD(O_4[start:]))
                  
                          from time import time
                          timeB = time()
                  
                          timeleft(a,L,timeB-timeA)
                  
                          I_STD_1[L//2] = I_STD_1_L[:]
                          I_STD_2[L//2] = I_STD_2_L[:]
                          I_STD_3[L//2] = I_STD_3_L[:]
                          I_STD_4[L//2] = I_STD_4_L[:]
                  
                          O_STD_0[L//2] = O_STD_0_L[:]
                          O_STD_1[L//2] = O_STD_1_L[:]
                          O_STD_2[L//2] = O_STD_2_L[:]
                          O_STD_3[L//2] = O_STD_3_L[:]
                          O_STD_4[L//2] = O_STD_4_L[:]
                  
                          CSV(a,L,I_STD_1,I_STD_2,I_STD_3,I_STD_4,O_STD_0,
                              O_STD_1,O_STD_2,O_STD_3,O_STD_4)
                  
                  
                  from time import time
                  timeE = time()
                  
                  print("Run Time: ",(timeE-time0)/3600," hours")
                  

                  解决方案

                  This would be a good time to look at a profiler. You can profile the code to determine where time is being spent. It would appear likely that you issue is in the simulation code, but without being able to see that code the best help you're likely to get going to be vague.

                  Edit in light of added code:

                  You're doing a fair amount of copying of lists, which while not terribly expensive can consume a lot of time.

                  I agree the your code is probably unnecessarily confusing and would advise you to clean up the code. Changing the confusing names to meaningful ones may help you find where you're having a problem.

                  Finally, it may be the case that your simulation is simply computationally expensive. You might want to consider looking into a SciPy, Pandas, or some other Python mathematic package to get better performance and perhaps better tools for expressing the model you're simulating.

                  这篇关于Python 脚本在进展过程中变慢?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  Running .jl file from R or Python(从 R 或 Python 运行 .jl 文件)
                  Running Julia .jl file in python(在 python 中运行 Julia .jl 文件)
                  Using PIP in a Azure WebApp(在 Azure WebApp 中使用 PIP)
                  How to run python3.7 based flask web api on azure(如何在 azure 上运行基于 python3.7 的烧瓶 web api)
                  Azure Python Web App Internal Server Error(Azure Python Web 应用程序内部服务器错误)
                  Run python dlib library on azure app service(在 azure app 服务上运行 python dlib 库)

                    <tfoot id='vyCDy'></tfoot>
                    <legend id='vyCDy'><style id='vyCDy'><dir id='vyCDy'><q id='vyCDy'></q></dir></style></legend>
                    • <bdo id='vyCDy'></bdo><ul id='vyCDy'></ul>
                    • <small id='vyCDy'></small><noframes id='vyCDy'>

                          <tbody id='vyCDy'></tbody>

                            <i id='vyCDy'><tr id='vyCDy'><dt id='vyCDy'><q id='vyCDy'><span id='vyCDy'><b id='vyCDy'><form id='vyCDy'><ins id='vyCDy'></ins><ul id='vyCDy'></ul><sub id='vyCDy'></sub></form><legend id='vyCDy'></legend><bdo id='vyCDy'><pre id='vyCDy'><center id='vyCDy'></center></pre></bdo></b><th id='vyCDy'></th></span></q></dt></tr></i><div id='vyCDy'><tfoot id='vyCDy'></tfoot><dl id='vyCDy'><fieldset id='vyCDy'></fieldset></dl></div>