• <small id='n9ext'></small><noframes id='n9ext'>

  • <legend id='n9ext'><style id='n9ext'><dir id='n9ext'><q id='n9ext'></q></dir></style></legend>

    <tfoot id='n9ext'></tfoot>

    <i id='n9ext'><tr id='n9ext'><dt id='n9ext'><q id='n9ext'><span id='n9ext'><b id='n9ext'><form id='n9ext'><ins id='n9ext'></ins><ul id='n9ext'></ul><sub id='n9ext'></sub></form><legend id='n9ext'></legend><bdo id='n9ext'><pre id='n9ext'><center id='n9ext'></center></pre></bdo></b><th id='n9ext'></th></span></q></dt></tr></i><div id='n9ext'><tfoot id='n9ext'></tfoot><dl id='n9ext'><fieldset id='n9ext'></fieldset></dl></div>
      <bdo id='n9ext'></bdo><ul id='n9ext'></ul>

      1. 返回二叉搜索树的最小和最大元素-Python

        RETURNING Minimum and Maximum elements of a Binary Search Tree - PYTHON(返回二叉搜索树的最小和最大元素-Python)

              <bdo id='OQhhp'></bdo><ul id='OQhhp'></ul>
                  <tbody id='OQhhp'></tbody>
                <legend id='OQhhp'><style id='OQhhp'><dir id='OQhhp'><q id='OQhhp'></q></dir></style></legend>

                <tfoot id='OQhhp'></tfoot>
                <i id='OQhhp'><tr id='OQhhp'><dt id='OQhhp'><q id='OQhhp'><span id='OQhhp'><b id='OQhhp'><form id='OQhhp'><ins id='OQhhp'></ins><ul id='OQhhp'></ul><sub id='OQhhp'></sub></form><legend id='OQhhp'></legend><bdo id='OQhhp'><pre id='OQhhp'><center id='OQhhp'></center></pre></bdo></b><th id='OQhhp'></th></span></q></dt></tr></i><div id='OQhhp'><tfoot id='OQhhp'></tfoot><dl id='OQhhp'><fieldset id='OQhhp'></fieldset></dl></div>
                1. <small id='OQhhp'></small><noframes id='OQhhp'>

                  本文介绍了返回二叉搜索树的最小和最大元素-Python的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  如何向我的BST类添加两个不同的函数来计算给定树中的最小和最大元素?那么最小(自我)函数和最大(自我)函数?目前我无法做到这一点,我有一种感觉,这可能与存储整数有关。我的下面的BST可以按原样存储整数吗?

                  class BTNode:
                      def __init__(self,d,l,r):
                          self.data = d
                          self.left = l
                          self.right = r
                  
                  t1 = BTNode(15,None,None)
                  t2 = BTNode(51,None,None)
                  t = BTNode(5,t1,t2)
                  t1 = BTNode(21,None,None)
                  t1 = BTNode(42,t1,None)
                  t2 = BTNode(18,None,None)
                  t2 = BTNode(8,t1,t2)
                  t = BTNode(2,t,t2)
                  
                  
                  def toString(t):
                      if t == None:
                          return "None"
                      st = str(t.data)+" -> ["
                      st += toString(t.left)+", "
                      st += toString(t.right)+"]"
                      return st
                  
                  print(toString(t))
                  
                  
                  #      2
                  #    /   
                  #   5     8
                  #  /     /  
                  # 15 51 42 18
                  #       /
                  #      21
                  
                  
                  # Depth-First search
                  def search(t, d):
                      if t == None: return False
                      # input("at node: "+str(t.data))
                      if t.data == d: return True
                      if search(t.left,d): return True
                      return search(t.right,d)
                  
                  print("
                  test search for 42 then 43")
                  print(search(t,42))
                  print(search(t,43))
                  
                  def printElemsDFS(t):
                      if t == None:
                          return 
                      print(t.data)
                      printElemsDFS(t.left)
                      printElemsDFS(t.right)
                      
                  print("
                  Print elements DFS")
                  printElemsDFS(t)
                  
                  # Depth-First search using a stack (needs the Stack class)
                  def searchDF(t, d):
                      s = Stack()
                      s.push(t)
                      while s.size() > 0:
                          ptr = s.pop()
                          if ptr == None:
                              continue
                          print(ptr.data)  # not needed, for illustration
                          if ptr.data == d:
                              return True
                          s.push(ptr.right)
                          s.push(ptr.left)
                      return False
                  
                  print("
                  test now searchDF for 42")
                  print(searchDF(t,42))
                  print("
                  test now searchDF for 43")
                  print(searchDF(t,43))
                  
                  # Breadth-First search (needs the Queue class)
                  def searchBF(t, d):
                      q = Queue()
                      q.enq(t)
                      while q.size() > 0:
                          ptr = q.deq()
                          if ptr == None:
                              continue
                          print(ptr.data)  # not needed, for illustration
                          if ptr.data == d:
                              return True
                          q.enq(ptr.left)
                          q.enq(ptr.right)
                      return False
                  
                  print("
                  test now searchBF for 42")
                  print(searchBF(t,42))
                  print("
                  test now searchBF for 43")
                  print(searchBF(t,43))
                  
                  
                  class BTNode:
                      def __init__(self,d,l,r):
                          self.data = d
                          self.left = l
                          self.right = r
                            
                  #     def updateChild(self, oldChild, newChild):
                  #         if self.left == oldChild:
                  #             self.left = newChild
                  #         elif self.right == oldChild:
                  #             self.right = newChild
                  #         else: raise Exception("updateChild error")
                  
                      # prints the node and all its children in a string
                      def __str__(self):  
                          st = str(self.data)+" -> ["
                          if self.left != None:
                              st += str(self.left)
                          else: st += "None"
                          if self.right != None:
                              st += ", "+str(self.right)
                          else: st += ", None"
                          return st + "]"
                  
                  
                  class BST:
                      def __init__(self):
                          self.root = None
                          self.size = 0
                          
                      def __str__(self):
                          return str(self.root)
                  
                      def search(self, d):
                          ptr = self.root
                          while ptr != None:
                              if d == ptr.data:
                                  return True
                              if d < ptr.data:
                                  ptr = ptr.left
                              else:
                                  ptr = ptr.right
                          return False    
                  
                      def add(self, d):
                          if self.root == None:
                              self.root = BTNode(d,None,None)
                          else:
                              ptr = self.root
                              while True:
                                  if d < ptr.data:
                                      if ptr.left == None:
                                          ptr.left = BTNode(d,None,None)
                                          break
                                      ptr = ptr.left
                                  else:
                                      if ptr.right == None:
                                          ptr.right = BTNode(d,None,None)
                                          break
                                      ptr = ptr.right
                          self.size += 1
                          
                      def add(self, d):
                          if self.root == None:
                              self.root = BTNode(d,None,None)
                          else:
                              self._addRec(d,self.root)
                          self.size += 1
                          
                      def _addRec(self,d,ptr):
                          if d < ptr.data:
                              if ptr.left == None:
                                  ptr.left = BTNode(d,None,None)
                                  return
                              return self._addRec(d,ptr.left)
                          else:
                              if ptr.right == None:
                                  ptr.right = BTNode(d,None,None)
                                  return
                              return self._addRec(d,ptr.right)
                      
                      
                      def count(self, d):
                          ptr = self.root
                          count = 0
                          while ptr != None:
                              ptr = self._searchNode(ptr,d)
                              if ptr != None:
                                  count += 1
                                  ptr = ptr.right
                          return count
                  
                      def _searchNode(self, ptr, d):
                          while ptr != None:
                              if d == ptr.data:
                                  return ptr
                              if d < ptr.data:
                                  ptr = ptr.left
                              else:
                                  ptr = ptr.right
                          return None
                  
                      def remove(self,d):
                          if self.root == None: return
                          if self.root.data == d: 
                              self.size -= 1
                              return self._removeRoot()
                          parentPtr = None
                          ptr = self.root
                          while ptr != None:
                              if ptr.data == d:
                                  self.size -= 1
                                  return self._removeNode(ptr,parentPtr)
                              parentPtr = ptr                
                              if d < ptr.data:
                                  ptr = ptr.left
                              else:
                                  ptr = ptr.right
                              
                      # removes the node ptr from the tree
                      def _removeNode(self, ptr, parentPtr):
                          # there are 3 cases to consider:
                          # 1. the node to be removed is a leaf (no children)
                          if ptr.left == ptr.right == None:
                              parentPtr.updateChild(ptr,None)
                          # 2. the node to be removed has exactly one child            
                          elif ptr.left == None:
                              parentPtr.updateChild(ptr,ptr.right)
                          elif ptr.right == None:
                              parentPtr.updateChild(ptr,ptr.left)
                          # 3. the node to be removed has both children
                          else:
                              # find the min node at the right of ptr -- and its parent
                              parentMinRNode = ptr
                              minRNode = ptr.right
                              while minRNode.left != None:
                                  parentMinRNode = minRNode
                                  minRNode = minRNode.left
                              # replace the data of ptr with that of the min node
                              ptr.data = minRNode.data
                              # bypass the min node
                              parentMinRNode.updateChild(minRNode,minRNode.right)
                          
                      def _removeRoot(self):
                          # this is essentially a hack: we are adding a dummy node at 
                          # the root and call the previous method -- it allows us to
                          # re-use code
                          parentRoot = BTNode(None,self.root,None)
                          self._removeNode(self.root,parentRoot)
                          self.root = parentRoot.left
                  
                  
                  t = BST()
                  t.add("cat")
                  t.add("car")
                  t.add("cav")
                  t.add("cat")
                  t.add("put")
                  t.add("cart")
                  t.add("cs")
                  print(t)
                  print(t.count("cat"),t.remove("cat"),t.count("cat"),t.size)
                  print(t)
                  print(t.count("cat"),t.remove("cat"),t.count("cat"),t.size)
                  print(t)
                  print(t.count("put"),t.remove("put"),t.count("put"),t.size)
                  print(t)
                  print(t.count("put"),t.remove("put"),t.count("put"),t.size)
                  print(t)
                  

                  推荐答案

                  在二叉搜索树中查找最小值等同于沿着左分支查找。在您的实现中,您可以将最后一个非空值保存在临时变量中,一旦找到None,您只需返回该值即可。最大值等同于右分支之后的值。将以下函数添加到您的BST实现中:

                  def min(self):
                      last_seen_value = None
                      ptr = self.root
                      while ptr is not None:
                          last_seen_value = ptr.data
                          ptr = ptr.left
                  
                      return last_seen_value
                  

                  示例:

                  In [1]: t.min()
                  Out[1]: 'car'
                  
                  In [2]: t.max()
                  Out[2]: 'cs'
                  
                  请注意,代码中的树示例注释不是二叉搜索树,它也与您的实现不匹配。您可以考虑修改该注释。

                  这篇关于返回二叉搜索树的最小和最大元素-Python的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  groupby multiple coords along a single dimension in xarray(在xarray中按单个维度的多个坐标分组)
                  Group by and Sum in Pandas without losing columns(Pandas中的GROUP BY AND SUM不丢失列)
                  Group by + New Column + Grab value former row based on conditionals(GROUP BY+新列+基于条件的前一行抓取值)
                  Groupby and interpolate in Pandas(PANDA中的Groupby算法和插值算法)
                  Pandas - Group Rows based on a column and replace NaN with non-null values(PANAS-基于列对行进行分组,并将NaN替换为非空值)
                  Grouping pandas DataFrame by 10 minute intervals(按10分钟间隔对 pandas 数据帧进行分组)
                    • <bdo id='XwVcg'></bdo><ul id='XwVcg'></ul>

                      • <tfoot id='XwVcg'></tfoot>

                        <small id='XwVcg'></small><noframes id='XwVcg'>

                        <i id='XwVcg'><tr id='XwVcg'><dt id='XwVcg'><q id='XwVcg'><span id='XwVcg'><b id='XwVcg'><form id='XwVcg'><ins id='XwVcg'></ins><ul id='XwVcg'></ul><sub id='XwVcg'></sub></form><legend id='XwVcg'></legend><bdo id='XwVcg'><pre id='XwVcg'><center id='XwVcg'></center></pre></bdo></b><th id='XwVcg'></th></span></q></dt></tr></i><div id='XwVcg'><tfoot id='XwVcg'></tfoot><dl id='XwVcg'><fieldset id='XwVcg'></fieldset></dl></div>

                        1. <legend id='XwVcg'><style id='XwVcg'><dir id='XwVcg'><q id='XwVcg'></q></dir></style></legend>

                              <tbody id='XwVcg'></tbody>