如何正确地将小时数添加到 pandas.tseries.index.DatetimeIndex?

How to properly add hours to a pandas.tseries.index.DatetimeIndex?(如何正确地将小时数添加到 pandas.tseries.index.DatetimeIndex?)
本文介绍了如何正确地将小时数添加到 pandas.tseries.index.DatetimeIndex?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我有一个普通的 df.index,我想增加几个小时.

I have a normal df.index that I would like to add some hours to it.

In [1]: test[1].index
Out[2]: 
<class 'pandas.tseries.index.DatetimeIndex'>
[2010-03-11, ..., 2014-08-14]
Length: 52, Freq: None, Timezone: None

这是第一个元素的样子:

This is how the first element looks like:

In [1]: test[1].index[0]
Out[2]: Timestamp('2010-03-11 00:00:00')

所以我试试这个来增加时间:

So I try this to add the hours:

In [1]: test[1].index[0] + pd.tseries.timedeltas.to_timedelta(16, unit='h')

但是我明白了:

Out[2]: Timestamp('2010-03-11 00:00:00.000000016')

但我想得到这个:

Out[2]: Timestamp('2010-03-11 16:00:00')

我错过了什么?环境是 Anaconda (latest) Python 2.7.7, iPython 2.2

What I am missing?. The enviroment is Anaconda (latest) Python 2.7.7, iPython 2.2

非常感谢

推荐答案

你可以使用pd.DateOffset:

test[1].index + pd.DateOffset(hours=16)

pd.DateOffset 接受与 dateutil.relativedelta 相同的关键字参数.

pd.DateOffset accepts the same keyword arguments as dateutil.relativedelta.

您遇到的问题是由于此错误,该错误已在 Pandas 版本 0.14.1 中修复:

The problem you encountered was due to this bug which has been fixed in Pandas version 0.14.1:

In [242]: pd.to_timedelta(16, unit='h')
Out[242]: numpy.timedelta64(16,'ns')

如果您升级,您的原始代码应该可以工作.

If you upgrade, your original code should work.

这篇关于如何正确地将小时数添加到 pandas.tseries.index.DatetimeIndex?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

Seasonal Decomposition of Time Series by Loess with Python(Loess 用 Python 对时间序列进行季节性分解)
Resample a time series with the index of another time series(使用另一个时间序列的索引重新采样一个时间序列)
How can I simply calculate the rolling/moving variance of a time series in python?(如何在 python 中简单地计算时间序列的滚动/移动方差?)
How to use Dynamic Time warping with kNN in python(如何在python中使用动态时间扭曲和kNN)
Keras LSTM: a time-series multi-step multi-features forecasting - poor results(Keras LSTM:时间序列多步多特征预测 - 结果不佳)
Python pandas time series interpolation and regularization(Python pandas 时间序列插值和正则化)