pandas 滚动窗口 - datetime64[ns] 未实现

Pandas Rolling Window - datetime64[ns] are not implemented( pandas 滚动窗口 - datetime64[ns] 未实现)
本文介绍了 pandas 滚动窗口 - datetime64[ns] 未实现的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我正在尝试使用 Python/Pandas 构建一些图表.我有每秒采样的数据.这是一个示例:

索引、时间、值31362, 1975-05-07 07:59:18, 36.15161231363, 1975-05-07 07:59:19, 36.18136831364, 1975-05-07 07:59:20, 36.19719531365, 1975-05-07 07:59:21, 36.15141331366, 1975-05-07 07:59:22, 36.13800931367, 1975-05-07 07:59:23, 36.14296231368, 1975-05-07 07:59:24, 36.122680

我需要创建各种窗口来查看数据.10、100、1000 等.不幸的是,当我尝试窗口化整个数据框时,出现以下错误...

NotImplementedError: 此 dtype datetime64[ns] 的滚动操作未实现

我查看了以下文档:

I'm attempting to use Python/Pandas to build some charts. I have data that is sampled every second. Here is a sample:

Index, Time, Value

31362, 1975-05-07 07:59:18,  36.151612
31363, 1975-05-07 07:59:19,  36.181368
31364, 1975-05-07 07:59:20,  36.197195
31365, 1975-05-07 07:59:21,  36.151413
31366, 1975-05-07 07:59:22,  36.138009
31367, 1975-05-07 07:59:23,  36.142962
31368, 1975-05-07 07:59:24,  36.122680

I need to create a variety of windows to look at the data. 10, 100, 1000 etc. Unfortunately when I attempt to window the entire data frame I get the error below...

NotImplementedError: ops for Rolling for this dtype datetime64[ns] are not implemented

I checked out these docs: http://pandas.pydata.org/pandas-docs/stable/computation.html as a reference, and they appear to be doing this on date ranges. I did notice that the data type between what they have and what I have is different.

Is there an easy way to do this?

This is ideally what I'm trying to do:

tmp = data.rolling(window=2)
tmp.mean()

I'm using plotly to plot the raw data and then the windowed data on top of it. My goal is to find ideal windows for identifying cleaner trends in the data removing some of the noise.

Thanks!

Additional Notes:

I think I need to take my data from this format:

pandas.core.series.Series to this one:

pandas.tseries.index.DatetimeIndex

解决方案

Setup

from StringIO import StringIO
import pandas as pd

text = """Index,Time,Value
31362,1975-05-07 07:59:18,36.151612
31363,1975-05-07 07:59:19,36.181368
31364,1975-05-07 07:59:20,36.197195
31365,1975-05-07 07:59:21,36.151413
31366,1975-05-07 07:59:22,36.138009
31367,1975-05-07 07:59:23,36.142962
31368,1975-05-07 07:59:24,36.122680"""

df = pd.read_csv(StringIO(text), index_col=0, parse_dates=[1])

df.rolling(2).mean()

NotImplementedError: ops for Rolling for this dtype datetime64[ns] are not implemented

First off, this is confirmation of @BrenBarn's comment and he should get the credit if he decides to post an answer. BrenBarn, if you decide to answer, I'll delete this post.

Explanation

Pandas has no idea what a rolling mean of date values ought to be. df.rolling(2).mean() is attempting to roll and average over both the Time and Value columns. The error is politely (or impolitely, depending on your perspective) telling you that you're trying something non-sensical.

Solution

Move the Time column to the index and then... well that's it.

df.set_index('Time').rolling(2).mean()

这篇关于 pandas 滚动窗口 - datetime64[ns] 未实现的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

Seasonal Decomposition of Time Series by Loess with Python(Loess 用 Python 对时间序列进行季节性分解)
Resample a time series with the index of another time series(使用另一个时间序列的索引重新采样一个时间序列)
How can I simply calculate the rolling/moving variance of a time series in python?(如何在 python 中简单地计算时间序列的滚动/移动方差?)
How to use Dynamic Time warping with kNN in python(如何在python中使用动态时间扭曲和kNN)
Keras LSTM: a time-series multi-step multi-features forecasting - poor results(Keras LSTM:时间序列多步多特征预测 - 结果不佳)
Python pandas time series interpolation and regularization(Python pandas 时间序列插值和正则化)