NARX PyNeurgen 库

NARX PyNeurgen library(NARX PyNeurgen 库)
本文介绍了NARX PyNeurgen 库的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我正在尝试在 Python 中创建自回归神经网络 (NARX).我只能找到一个库 PyNeurgen.但我找不到任何示例程序来使用它.使用网络训练和预测时间序列.如果有人可以分享如何使用网络训练和预测时间序列.或者如果有任何其他好的 NARX 库.

I am trying to create autoregressive neural network (NARX) in Python. I just could find one library PyNeurgen. But I am not able to find any sample program to use it. To train and predict time series using the network. If anyone can share how to train and predict time series using network. Or if there is any other good library for NARX.

推荐答案

查看教程:http://pyneurgen.sourceforge.net/tutorial_nn.html你可以在这里找到测试用例: https://github.com/katerina7479/pyneurgen/blob/22e25c01469b3967360401196e7cd12dd5b00358/pyneurgen/demo/simple_network_with_graphs.py

check the tutorial: http://pyneurgen.sourceforge.net/tutorial_nn.html and You can find testcase here: https://github.com/katerina7479/pyneurgen/blob/22e25c01469b3967360401196e7cd12dd5b00358/pyneurgen/demo/simple_network_with_graphs.py

...
from pyneurgen.recurrent import NARXRecurrent
...
#   NARXRecurrent
input_nodes = 2
hidden_nodes = 2
output_nodes = 2

output_order = 3
incoming_weight_from_output = .6
input_order = 2
incoming_weight_from_input = .4

net = NeuralNet()
net.init_layers(input_nodes, [hidden_nodes], output_nodes,
    NARXRecurrent(
        output_order,
        incoming_weight_from_output,
        input_order,
        incoming_weight_from_input))

net.randomize_network()

这篇关于NARX PyNeurgen 库的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

Seasonal Decomposition of Time Series by Loess with Python(Loess 用 Python 对时间序列进行季节性分解)
Resample a time series with the index of another time series(使用另一个时间序列的索引重新采样一个时间序列)
How can I simply calculate the rolling/moving variance of a time series in python?(如何在 python 中简单地计算时间序列的滚动/移动方差?)
How to use Dynamic Time warping with kNN in python(如何在python中使用动态时间扭曲和kNN)
Keras LSTM: a time-series multi-step multi-features forecasting - poor results(Keras LSTM:时间序列多步多特征预测 - 结果不佳)
Python pandas time series interpolation and regularization(Python pandas 时间序列插值和正则化)