没有频率的差异 pandas.DateTimeIndex

Difference pandas.DateTimeIndex without a frequency(没有频率的差异 pandas.DateTimeIndex)
本文介绍了没有频率的差异 pandas.DateTimeIndex的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

一个不规则的时间序列data存储在一个pandas.DataFrame中.DatetimeIndex 已设置.我需要索引中连续条目之间的时间差.

An irregular time series data is stored in a pandas.DataFrame. A DatetimeIndex has been set. I need the time difference between consecutive entries in the index.

我以为会很简单

data.index.diff()

但是得到了

AttributeError: 'DatetimeIndex' object has no attribute 'diff'

我试过了

data.index - data.index.shift(1)

但是得到了

ValueError: Cannot shift with no freq

我不想在执行此操作之前先推断或强制执行频率.时间序列中存在很大的差距,这些差距将扩展到 nan 的大量运行.重点是首先找到这些差距.

I do not want to infer or enforce a frequency first before doing this operation. There are large gaps in the time series that would be expanded to large runs of nan. The point is to find these gaps first.

那么,什么是干净的方法来完成这个看似简单的操作呢?

So, what is a clean way to do this seemingly simple operation?

推荐答案

目前还没有实现index的diff函数.

There is no implemented diff function yet for index.

但是,可以先使用 Series.Index.to_series.html" rel="noreferrer">Index.to_series,如果您需要保留原始索引.如果需要默认索引,请使用不带索引参数的 Series 构造函数.

However, it is possible to convert the index to a Series first by using Index.to_series, if you need to preserve the original index. Use the Series constructor with no index parameter if the default index is needed.

代码示例:

rng = pd.to_datetime(['2015-01-10','2015-01-12','2015-01-13'])
data = pd.DataFrame({'a': range(3)}, index=rng)  
print(data)
             a
 2015-01-10  0
 2015-01-12  1
 2015-01-13  2

a = data.index.to_series().diff()
print(a)

2015-01-10      NaT
2015-01-12   2 days
2015-01-13   1 days
dtype: timedelta64[ns]

a = pd.Series(data.index).diff()
print(a)
 0      NaT
 1   2 days
 2   1 days
dtype: timedelta64[ns]

这篇关于没有频率的差异 pandas.DateTimeIndex的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

Seasonal Decomposition of Time Series by Loess with Python(Loess 用 Python 对时间序列进行季节性分解)
Resample a time series with the index of another time series(使用另一个时间序列的索引重新采样一个时间序列)
How can I simply calculate the rolling/moving variance of a time series in python?(如何在 python 中简单地计算时间序列的滚动/移动方差?)
How to use Dynamic Time warping with kNN in python(如何在python中使用动态时间扭曲和kNN)
Keras LSTM: a time-series multi-step multi-features forecasting - poor results(Keras LSTM:时间序列多步多特征预测 - 结果不佳)
Python pandas time series interpolation and regularization(Python pandas 时间序列插值和正则化)