pandas :使用最后可用的填充缺失值

Pandas: Fill missing values using last available( pandas :使用最后可用的填充缺失值)
本文介绍了 pandas :使用最后可用的填充缺失值的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

问题描述

我有一个如下的数据框:

I have a dataframe as follows:

              A       B 
  zDate
01-JAN-17    100     200
02-JAN-17    111     203
03-JAN-17    NaN     202
04-JAN-17    109     205
05-JAN-17    101     211
06-JAN-17    105     NaN
07-JAN-17    104     NaN

使用最后可用的值填充缺失值的最佳方法是什么?

What is the best way, to fill the missing values, using last available ones?

以下是预期的结果:

              A       B 
  zDate
01-JAN-17    100     200
02-JAN-17    111     203
03-JAN-17    111     202
04-JAN-17    109     205
05-JAN-17    101     211
06-JAN-17    105     211
07-JAN-17    104     211

推荐答案

使用ffill函数,和fillna 方法 ffill:

df = df.ffill()
print (df)
               A      B
zDate                  
01-JAN-17  100.0  200.0
02-JAN-17  111.0  203.0
03-JAN-17  111.0  202.0
04-JAN-17  109.0  205.0
05-JAN-17  101.0  211.0
06-JAN-17  105.0  211.0
07-JAN-17  104.0  211.0

这篇关于 pandas :使用最后可用的填充缺失值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

相关文档推荐

Seasonal Decomposition of Time Series by Loess with Python(Loess 用 Python 对时间序列进行季节性分解)
Resample a time series with the index of another time series(使用另一个时间序列的索引重新采样一个时间序列)
How can I simply calculate the rolling/moving variance of a time series in python?(如何在 python 中简单地计算时间序列的滚动/移动方差?)
How to use Dynamic Time warping with kNN in python(如何在python中使用动态时间扭曲和kNN)
Keras LSTM: a time-series multi-step multi-features forecasting - poor results(Keras LSTM:时间序列多步多特征预测 - 结果不佳)
Python pandas time series interpolation and regularization(Python pandas 时间序列插值和正则化)