本文介绍了 pandas :使用最后可用的填充缺失值的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!
问题描述
我有一个如下的数据框:
I have a dataframe as follows:
A B
zDate
01-JAN-17 100 200
02-JAN-17 111 203
03-JAN-17 NaN 202
04-JAN-17 109 205
05-JAN-17 101 211
06-JAN-17 105 NaN
07-JAN-17 104 NaN
使用最后可用的值填充缺失值的最佳方法是什么?
What is the best way, to fill the missing values, using last available ones?
以下是预期的结果:
A B
zDate
01-JAN-17 100 200
02-JAN-17 111 203
03-JAN-17 111 202
04-JAN-17 109 205
05-JAN-17 101 211
06-JAN-17 105 211
07-JAN-17 104 211
推荐答案
使用ffill
函数,和fillna
方法 ffill
:
df = df.ffill()
print (df)
A B
zDate
01-JAN-17 100.0 200.0
02-JAN-17 111.0 203.0
03-JAN-17 111.0 202.0
04-JAN-17 109.0 205.0
05-JAN-17 101.0 211.0
06-JAN-17 105.0 211.0
07-JAN-17 104.0 211.0
这篇关于 pandas :使用最后可用的填充缺失值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!
本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!