问题描述
以下来自 Plotly 的示例供参考:
将 plotly.express 导入为 pxdf = px.data.gapminder().query("大陆 == '欧洲' 和年份 == 2007 和流行 > 2.e6")fig = px.bar(df, y='pop', x='country', text='pop')fig.update_traces(texttemplate='%{text:.2s}', textposition='outside')fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide')图.show()
如何去掉pop"这个词.
<小时>我想隐藏'value'的y轴标题.
以下语法不起作用.
fig.update_yaxes(showticklabels=False)
谢谢.
解决方案
您需要在 fig.update_yaxes()
内使用 visible=False
或fig.update_layout()
如下.有关更多详细信息,请参阅
B.如何在没有边距空间的情况下创建图形
说,您隐藏了两个轴的标题.默认情况下 plotly
仍然会在图形周围留下默认的空间量:这在 Plotly 的文档中称为 margin
.
如果你想减少甚至完全去除边距怎么办?
这可以使用 fig.update_layout(margin=dict(l = ..., r = ..., t = ..., b = ...))
来完成在文档中:
C.Plotly 的一个有趣功能:隐藏的速记
事实证明,Plotly 有一个方便的速记符号允许 dict-flattening 可用于输入参数,例如:
## 下面的所有三种方法都是等价的# 没有 dict-flattening# layout = 以 yaxis 为键的 dict布局 = {'yaxis': {'title': 'y-label',可见":错误,'showticklabels':错误}}# 部分字典扁平化# layout_yaxis = 带有键名的字典# 标题,可见,showticklabelslayout_yaxis = {'title': 'y-label',可见":错误,'showticklabels':错误}# 完成 dict-flattening# 每个键名的 layout_yaxis_key-namelayout_yaxis_title = 'y-标签'layout_yaxis_visible = Falselayout_yaxis_showticklabels = False
现在尝试运行以下所有三个并比较输出.
import plotly.graph_objects as go# 方法一:最短(不太详细)fig = go.Figure(数据=[go.Bar(y=[2, 1, 3])],layout_title_text=显示自身的图形",layout_yaxis_visible = False,layout_xaxis_title = 'x-标签')图.show()# Method-2: 混合字典和下划线分隔语法fig = go.Figure(数据=[go.Bar(y=[2, 1, 3])],layout_title_text=显示自身的图形",layout_xaxis_title = 'x-标签',layout_yaxis = {'title': 'y-label',可见":错误,'showticklabels':错误})图.show()# Method-3:完整的dict语法fig = go.Figure(数据=[go.Bar(y=[2, 1, 3])],layout_title_text=显示自身的图形",布局 = {'xaxis': {'title': 'x-label',可见":是的,'showticklabels': True},'yaxis': {'title': 'y-label',可见":错误,'showticklabels':错误}})图.show()
Editing: The following example from Plotly for reference:
import plotly.express as px df = px.data.gapminder().query("continent == 'Europe' and year == 2007 and pop > 2.e6") fig = px.bar(df, y='pop', x='country', text='pop') fig.update_traces(texttemplate='%{text:.2s}', textposition='outside') fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide') fig.show()
How to remove the word 'pop'.
What I want to hide the y-axis title of'value'.
The following syntax doesn't work.
fig.update_yaxes(showticklabels=False)
Thanks.
解决方案Solution
You need to use
visible=False
insidefig.update_yaxes()
orfig.update_layout()
as follows. For more details see the documentation for plotly.graph_objects.Figure.# Option-1: using fig.update_yaxes() fig.update_yaxes(visible=False, showticklabels=False) # Option-2: using fig.update_layout() fig.update_layout(yaxis={'visible': False, 'showticklabels': False}) # Option-3: using fig.update_layout() + dict-flattening shorthand fig.update_layout(yaxis_visible=False, yaxis_showticklabels=False)
Try doing the following to test this:
# Set the visibility ON fig.update_yaxes(title='y', visible=True, showticklabels=False) # Set the visibility OFF fig.update_yaxes(title='y', visible=False, showticklabels=False)
A. How to create the figure directly with hidden-yaxis label and tickmarks
You can do this directly by using the
layout
keyword and supplying adict
togo.Figure()
constructor.import plotly.graph_objects as go fig = go.Figure( data=[go.Bar(y=[2, 1, 3])], layout_title_text="A Figure Displaying Itself", layout = {'xaxis': {'title': 'x-label', 'visible': True, 'showticklabels': True}, 'yaxis': {'title': 'y-label', 'visible': False, 'showticklabels': False} } ) fig
B. How to create the figure without the margin space around
Say, you suppressed the titles for both the axes. By default
plotly
would still leave a default amount of space all around the figure: this is known as themargin
in Plotly's documention.What if you want to reduce or even completely remove the margin?
This can be done using
fig.update_layout(margin=dict(l = ..., r = ..., t = ..., b = ...))
as mentioned in the documentation:- https://plotly.com/python/reference/#layout-margin.
In the following example, I have reduced the
left
,right
andbottom
margins to10 px
and set thetop
margin to50 px
.import plotly.graph_objects as go fig = go.Figure( data=[go.Bar(y=[2, 1, 3])], layout_title_text="A Figure with no axis-title and modified margins", layout = { 'xaxis': {'title': 'x-label', 'visible': False, 'showticklabels': True}, 'yaxis': {'title': 'y-label', 'visible': False, 'showticklabels': False}, # specify margins in px 'margin': dict( l = 10, # left r = 10, # right t = 50, # top b = 10, # bottom ), }, ) fig
C. An Interesting Feature of Plotly: A hidden shorthand
It turns out that Plotly has a convenient shorthand notation allowing dict-flattening available for input arguments such as this:
## ALL THREE METHODS BELOW ARE EQUIVALENT # No dict-flattening # layout = dict with yaxis as key layout = {'yaxis': {'title': 'y-label', 'visible': False, 'showticklabels': False} } # Partial dict-flattening # layout_yaxis = dict with key-names # title, visible, showticklabels layout_yaxis = {'title': 'y-label', 'visible': False, 'showticklabels': False} # Complete dict-flattening # layout_yaxis_key-name for each of the key-names layout_yaxis_title = 'y-label' layout_yaxis_visible = False layout_yaxis_showticklabels = False
Now try running all three of the following and compare the outputs.
import plotly.graph_objects as go # Method-1: Shortest (less detailed) fig = go.Figure( data=[go.Bar(y=[2, 1, 3])], layout_title_text="A Figure Displaying Itself", layout_yaxis_visible = False, layout_xaxis_title = 'x-label' ) fig.show() # Method-2: A hibrid of dicts and underscore-separated-syntax fig = go.Figure( data=[go.Bar(y=[2, 1, 3])], layout_title_text="A Figure Displaying Itself", layout_xaxis_title = 'x-label', layout_yaxis = {'title': 'y-label', 'visible': False, 'showticklabels': False} ) fig.show() # Method-3: A complete dict syntax fig = go.Figure( data=[go.Bar(y=[2, 1, 3])], layout_title_text="A Figure Displaying Itself", layout = {'xaxis': {'title': 'x-label', 'visible': True, 'showticklabels': True}, 'yaxis': {'title': 'y-label', 'visible': False, 'showticklabels': False} } ) fig.show()
这篇关于如何隐藏 plotly yaxis 标题(在 python 中)?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!
本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!