<bdo id='GDQsI'></bdo><ul id='GDQsI'></ul>

    <small id='GDQsI'></small><noframes id='GDQsI'>

    <legend id='GDQsI'><style id='GDQsI'><dir id='GDQsI'><q id='GDQsI'></q></dir></style></legend>

    <tfoot id='GDQsI'></tfoot>

    1. <i id='GDQsI'><tr id='GDQsI'><dt id='GDQsI'><q id='GDQsI'><span id='GDQsI'><b id='GDQsI'><form id='GDQsI'><ins id='GDQsI'></ins><ul id='GDQsI'></ul><sub id='GDQsI'></sub></form><legend id='GDQsI'></legend><bdo id='GDQsI'><pre id='GDQsI'><center id='GDQsI'></center></pre></bdo></b><th id='GDQsI'></th></span></q></dt></tr></i><div id='GDQsI'><tfoot id='GDQsI'></tfoot><dl id='GDQsI'><fieldset id='GDQsI'></fieldset></dl></div>
    2. 如何在每个波段/bin中以数据百分比作为标签绘制正态分布?

      How to plot normal distribution with percentage of data as label in each band/bin?(如何在每个波段/bin中以数据百分比作为标签绘制正态分布?)
      • <bdo id='ITXi2'></bdo><ul id='ITXi2'></ul>

            <tbody id='ITXi2'></tbody>

            <i id='ITXi2'><tr id='ITXi2'><dt id='ITXi2'><q id='ITXi2'><span id='ITXi2'><b id='ITXi2'><form id='ITXi2'><ins id='ITXi2'></ins><ul id='ITXi2'></ul><sub id='ITXi2'></sub></form><legend id='ITXi2'></legend><bdo id='ITXi2'><pre id='ITXi2'><center id='ITXi2'></center></pre></bdo></b><th id='ITXi2'></th></span></q></dt></tr></i><div id='ITXi2'><tfoot id='ITXi2'></tfoot><dl id='ITXi2'><fieldset id='ITXi2'></fieldset></dl></div>

            • <legend id='ITXi2'><style id='ITXi2'><dir id='ITXi2'><q id='ITXi2'></q></dir></style></legend>

              <small id='ITXi2'></small><noframes id='ITXi2'>

              <tfoot id='ITXi2'></tfoot>
                本文介绍了如何在每个波段/bin中以数据百分比作为标签绘制正态分布?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                问题描述

                在绘制数据的正态分布图时,我们如何使用 matplotlib/seaborn 或 plotly 在每个条带宽度为 1 个标准差的每个 bin 中放置如下图所示的标签?

                While plotting normal distribution graph of data, how can we put labels like in image below for percentage of data in each bin where each band has a width of 1 standard deviation using matplotlib/seaborn or plotly ?

                目前,我的绘图是这样的:

                Currently, im plotting like this:

                hmean = np.mean(data)
                hstd = np.std(data)
                pdf = stats.norm.pdf(data, hmean, hstd)
                plt.plot(data, pdf)
                

                推荐答案

                虽然我已经标记了四分位数之间的百分比,但这段代码可能有助于对标准差做同样的事情.

                Although I've labelled the percentages between the quartiles, this bit of code may be helpful to do the same for the standard deviations.

                import numpy as np
                import scipy
                import pandas as pd
                from scipy.stats import norm
                import matplotlib.pyplot as plt
                from matplotlib.mlab import normpdf
                
                # dummy data
                mu = 0
                sigma = 1
                n_bins = 50
                s = np.random.normal(mu, sigma, 1000)
                
                fig, axes = plt.subplots(nrows=2, ncols=1, sharex=True)
                
                #histogram
                n, bins, patches = axes[1].hist(s, n_bins, normed=True, alpha=.1, edgecolor='black' )
                pdf = 1/(sigma*np.sqrt(2*np.pi))*np.exp(-(bins-mu)**2/(2*sigma**2))
                
                median, q1, q3 = np.percentile(s, 50), np.percentile(s, 25), np.percentile(s, 75)
                print(q1, median, q3)
                
                #probability density function
                axes[1].plot(bins, pdf, color='orange', alpha=.6)
                
                #to ensure pdf and bins line up to use fill_between.
                bins_1 = bins[(bins >= q1-1.5*(q3-q1)) & (bins <= q1)] # to ensure fill starts from Q1-1.5*IQR
                bins_2 = bins[(bins <= q3+1.5*(q3-q1)) & (bins >= q3)]
                pdf_1 = pdf[:int(len(pdf)/2)]
                pdf_2 = pdf[int(len(pdf)/2):]
                pdf_1 = pdf_1[(pdf_1 >= norm(mu,sigma).pdf(q1-1.5*(q3-q1))) & (pdf_1 <= norm(mu,sigma).pdf(q1))]
                pdf_2 = pdf_2[(pdf_2 >= norm(mu,sigma).pdf(q3+1.5*(q3-q1))) & (pdf_2 <= norm(mu,sigma).pdf(q3))]
                
                #fill from Q1-1.5*IQR to Q1 and Q3 to Q3+1.5*IQR
                axes[1].fill_between(bins_1, pdf_1, 0, alpha=.6, color='orange')
                axes[1].fill_between(bins_2, pdf_2, 0, alpha=.6, color='orange')
                
                print(norm(mu, sigma).cdf(median))
                print(norm(mu, sigma).pdf(median))
                
                #add text to bottom graph.
                axes[1].annotate("{:.1f}%".format(100*norm(mu, sigma).cdf(q1)), xy=((q1-1.5*(q3-q1)+q1)/2, 0), ha='center')
                axes[1].annotate("{:.1f}%".format(100*(norm(mu, sigma).cdf(q3)-norm(mu, sigma).cdf(q1))), xy=(median, 0), ha='center')
                axes[1].annotate("{:.1f}%".format(100*(norm(mu, sigma).cdf(q3+1.5*(q3-q1)-q3)-norm(mu, sigma).cdf(q3))), xy=((q3+1.5*(q3-q1)+q3)/2, 0), ha='center')
                axes[1].annotate('q1', xy=(q1, norm(mu, sigma).pdf(q1)), ha='center')
                axes[1].annotate('q3', xy=(q3, norm(mu, sigma).pdf(q3)), ha='center')
                
                axes[1].set_ylabel('probability')
                
                #top boxplot
                axes[0].boxplot(s, 0, 'gD', vert=False)
                axes[0].axvline(median, color='orange', alpha=.6, linewidth=.5)
                axes[0].axis('off')
                
                plt.subplots_adjust(hspace=0)
                plt.show()
                

                这篇关于如何在每个波段/bin中以数据百分比作为标签绘制正态分布?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                相关文档推荐

                Adding config modes to Plotly.Py offline - modebar(将配置模式添加到 Plotly.Py 离线 - 模式栏)
                Plotly: How to style a plotly figure so that it doesn#39;t display gaps for missing dates?(Plotly:如何设置绘图图形的样式,使其不显示缺失日期的间隙?)
                python save plotly plot to local file and insert into html(python将绘图保存到本地文件并插入到html中)
                Plotly: What color cycle does plotly express follow?(情节:情节表达遵循什么颜色循环?)
                How to save plotly express plot into a html or static image file?(如何将情节表达图保存到 html 或静态图像文件中?)
                Plotly: How to make a line plot from a pandas dataframe with a long or wide format?(Plotly:如何使用长格式或宽格式的 pandas 数据框制作线图?)

                    <i id='jPyQx'><tr id='jPyQx'><dt id='jPyQx'><q id='jPyQx'><span id='jPyQx'><b id='jPyQx'><form id='jPyQx'><ins id='jPyQx'></ins><ul id='jPyQx'></ul><sub id='jPyQx'></sub></form><legend id='jPyQx'></legend><bdo id='jPyQx'><pre id='jPyQx'><center id='jPyQx'></center></pre></bdo></b><th id='jPyQx'></th></span></q></dt></tr></i><div id='jPyQx'><tfoot id='jPyQx'></tfoot><dl id='jPyQx'><fieldset id='jPyQx'></fieldset></dl></div>

                    <small id='jPyQx'></small><noframes id='jPyQx'>

                          <bdo id='jPyQx'></bdo><ul id='jPyQx'></ul>

                            <tbody id='jPyQx'></tbody>
                          <tfoot id='jPyQx'></tfoot>

                        • <legend id='jPyQx'><style id='jPyQx'><dir id='jPyQx'><q id='jPyQx'></q></dir></style></legend>